Discuss the Ideas

- **1.** When m is an integer, describe the relationship between a^m and a^{-m} .
- 2. Why is there usually more than one way to determine the value of a power of the form $a^{\frac{n}{n}}$? Use examples to justify your answer.

Exercises

3. Copy then complete each equation.

a)
$$\frac{1}{5^4} = 5^{\circ}$$

a)
$$\frac{1}{5^4} = 5^{\circ}$$
 b) $\left(-\frac{1}{2}\right)^{-3} = (-2)^{\circ}$

c)
$$\frac{1}{3^{\circ}} = 3^2$$

c)
$$\frac{1}{3^{\circ}} = 3^2$$
 d) $\frac{1}{4^{-2}} = 4^{\circ}$

- **4.** Evaluate the powers in each pair without a calculator.
 - a) 4^2 and 4^{-2}
- **b**) 2^4 and 2^{-4}
- c) 6^1 and 6^{-1}
- d) 4^3 and 4^{-3}

Describe what is similar about the answers, and what is different.

- **5.** Given that $2^{10} = 1024$, what is 2^{-10} ?
- **6.** Write each power with a positive exponent.
 - a) 2^{-3}
- **b**) 3^{-5}
- c) $(-7)^{-2}$
- **7.** Write each power with a positive exponent.
- a) $\left(\frac{1}{2}\right)^{-2}$ b) $\left(\frac{2}{3}\right)^{-3}$ c) $\left(-\frac{6}{5}\right)^{-4}$
- **8.** Evaluate each power without using a calculator.
- **b**) 2^{-4}
- c) $(-2)^{-5}$
- d) $\left(\frac{1}{3}\right)^{-3}$ e) $\left(-\frac{2}{3}\right)^{-2}$ f) $\frac{1}{5^{-3}}$

- 9. Evaluate each power without using a calculator.
 - a) $4^{-\frac{1}{2}}$

- **10.** Use a power with a negative exponent to write an equivalent form for each number.
 - a) $\frac{1}{9}$
- $\mathbf{b})\frac{1}{5}$
- c) 4
- \mathbf{d}) -3

- **11.** When you save money in a bank, the bank pays you interest. This interest is added to your investment and the resulting amount also earns interest. We say the interest compounds. Suppose you want an amount of \$3000 in 5 years. The interest rate for the savings account is 2.5% compounded annually. The money, P dollars, you must invest now is given by the formula: $P = 3000(1.025)^{-5}$. How much must you invest now to have \$3000 in 5 years?
- **12.** Here is a student's solution for evaluating a power. Identify any errors in the solution. Write a correct solution.

$$\left(-\frac{64}{125}\right)^{-\frac{5}{3}} = \left(\frac{64}{125}\right)^{\frac{5}{3}}$$

$$= \left(\sqrt[3]{\frac{64}{125}}\right)^5$$

$$= \left(\frac{4}{5}\right)^5$$

$$= \frac{1024}{3125}$$

- **13.** Evaluate each power without using a calculator.
 - a) $27^{-\frac{4}{3}}$
- **b**) 16^{-1.5} **c**) 32^{-0.4}
- d) $\left(-\frac{8}{27}\right)^{\frac{2}{3}}$ e) $\left(\frac{81}{16}\right)^{-\frac{3}{4}}$ f) $\left(\frac{9}{4}\right)^{-\frac{5}{2}}$
- **14.** Michelle wants to invest enough money on January 1st to pay her nephew \$150 at the end of each year for the next 10 years. The savings account pays 3.2% compounded annually. The money, P dollars, that Michelle must invest today is given by the formula

 $P = \frac{150[1 - 1.032^{-10}]}{0.032}$. How much must Michelle invest on January 1st?

- 20. a) Approximately 93%
 - b) Approximately 81%
 - c) 5 h
- 21. Mars; period of Earth: approximately 363.8 Earth days; period of Mars: approximately 688.5 Earth days
- 22. Karen
- 4.5 Negative Exponents and Reciprocals, page 233
- 3. a) $\frac{1}{5^4} = 5^{-4}$
- **b)** $\left(-\frac{1}{2}\right)^{-3} = (-2)^3$
- c) $\frac{1}{3^{-2}} = 3^2$ d) $\frac{1}{4^{-2}} = 4^2$
- **4. a)** 16, $\frac{1}{16}$
- **b)** 16, $\frac{1}{16}$
- c) 6, $\frac{1}{6}$
- d) 64, $\frac{1}{64}$
- 5. $\frac{1}{1024}$
- 6. a) $\frac{1}{2^3}$
 - **b**) $\frac{1}{3^5}$
 - c) $\frac{1}{(-7)^2}$, or $\frac{1}{7^2}$
- 7. a) 2^2
- c) $\left(-\frac{5}{6}\right)^4$, or $\left(\frac{5}{6}\right)^4$
- 8. a) $\frac{1}{9}$

- d) 27
- f) 125
- 9. a)

- h) 125

- 10. Answers may vary. For example:

 - **b)** $25^{-\frac{1}{2}}$
 - **c)** $\left(\frac{1}{2}\right)^{-2}$
 - d) $\left(\frac{1}{-27}\right)^{-\frac{1}{3}}$
- 11. \$2651.56
- **12.** $-\frac{3125}{1024}$
- 13. a) $\frac{1}{81}$

- **14.** \$1266.57
- 15. Approximately 0.19%
- **16.** 5^{-2} ; $\frac{1}{25} > \frac{1}{32}$
- 17. a) The numbers at the left are divided by 2 each time. The exponents in the powers at the right decrease by 1 each
 - **b)** $2 = 2^1$; $1 = 2^0$; $\frac{1}{2} = 2^{-1}$; $\frac{1}{4} = 2^{-2}$; $\frac{1}{8} = 2^{-3}$
- **18.** 38, or 6561 times as great
- 19. a) The exponent is positive.
 - b) The exponent is negative.
 - c) The exponent is 0.
- 20. No; if the base is between 0 and 1, the power will be

greater than 1. For example: $\left(\frac{1}{2}\right)^{n}$

- 21. a) Approximately $2.0 \times 10^{20} \text{ N}$
 - b) Answers may vary depending on researched values. For example: approximately 1.9×10^{20} N

Chapter 4: Checkpoint 2, page 236

- 1. a) 2
- c) 16
- e) -32