Key Ideas

- A sequence is an ordered list of elements.
- Elements within the range of the sequence are called terms of the sequence.
- To describe any term of a sequence, an expression is used for t_n , where $n \in \mathbb{N}$. This term is called the general term.
- In an arithmetic sequence, each successive term is formed by adding a constant. This constant is called the common difference.
- The general term of an arithmetic sequence is

 $t_n = t_1 + (n - 1)d$ where t_1 is the first term n is the number of terms $(n \in N)$ d is the common difference t_n is the general term or nth term

Check Your Understanding

Practise

- 1. Identify the arithmetic sequences from the following sequences. For each arithmetic sequence, state the value of t_1 , the value of d, and the next three terms.
 - **a)** 16, 32, 48, 64, 80, ...
 - **b)** 2, 4, 8, 16, 32, ...
 - **c)** -4, -7, -10, -13, -16, ...
 - **d)** 3, 0, -3, -6, -9, ...
- **2.** Write the first four terms of each arithmetic sequence for the given values of t_1 and d.
 - a) $t_1 = 5, d = 3$
 - **b)** $t_1 = -1, d = -4$

c)
$$t_1 = 4, d = \frac{1}{5}$$

- **d)** $t_1 = 1.25, d = -0.25$
- **3.** For the sequence defined by $t_n = 3n + 8$, find each indicated term.
 - a) t_1 b) t_7 c) t_{14}

4. For each arithmetic sequence determine the values of t_1 and d. State the missing terms of the sequence.

b) **■**, **■**, 3,
$$\frac{3}{2}$$

c) ■, 4, **■**, **■**, 10

5. Determine the position of the given term to complete the following statements.

a) 170 is the ■th term of −4, 2, 8, ...

- **b)** -14 is the **a**th term of $2\frac{1}{5}$, 2, $1\frac{4}{5}$, ...
- **c)** 97 is the **b**th term of -3, 1, 5, ...
- **d)** −10 is the **u**th term of 14, 12.5, 11, ...
- **6.** Determine the second and third terms of an arithmetic sequence if
 - a) the first term is 6 and the fourth term is 33
 - **b)** the first term is 8 and the fourth term is 41
 - c) the first term is 42 and the fourth term is 27

7. The graph of an arithmetic sequence is shown.

- a) What are the first five terms of the sequence?
- **b)** Write the general term of this sequence.
- **c)** What is t_{50} ? t_{200} ?
- **d)** Describe the relationship between the slope of the graph and your formula from part b).
- e) Describe the relationship between the *y*-intercept and your formula from part b).

Apply

- **8.** Which arithmetic sequence(s) contain the term 34? Justify your conclusions.
 - **A** $t_n = 6 + (n-1)4$
 - **B** $t_n = 3n 1$
 - **C** $t_1 = 12, d = 5.5$
 - **D** 3, 7, 11, ...
- **9.** Determine the first term of the arithmetic sequence in which the 16th term is 110 and the common difference is 7.
- **10.** The first term of an arithmetic sequence is 5y and the common difference is -3y. Write the equations for t_p and t_{15} .
- **11.** The terms 5x + 2, 7x 4, and 10x + 6 are consecutive terms of an arithmetic sequence. Determine the value of *x* and state the three terms.

- **12.** The numbers represented by *x*, *y*, and *z* are the first three terms of an arithmetic sequence. Express *z* in terms of *x* and *y*.
- **13.** Each square in this pattern has a side length of 1 unit. Assume the pattern continues.

- **a)** Write an equation in which the perimeter is a function of the figure number.
- **b)** Determine the perimeter of Figure 9.
- c) Which figure has a perimeter of 76 units?
- 14. The Wolf Creek Golf Course, located near Ponoka, Alberta, has been the site of the Canadian Tour Alberta Open Golf Championship. This tournament has a maximum entry of 132 players. The tee-off times begin at 8:00 and are 8 min apart.
 - a) The tee-off times generate an arithmetic sequence. Write the first four terms of the arithmetic sequence, if the first tee-off time of 8:00 is considered to be at time 0.
 - **b)** Following this schedule, how many players will be on the course after 1 h, if the tee-off times are for groups of four?
 - **c)** Write the general term for the sequence of tee-off times.
 - d) At what time will the last group tee-off?
 - e) What factors might affect the prearranged tee-off time?

Did You Know?

The first championship at Wolf Creek was held in 1987 and has attracted PGA professionals, including Mike Weir and Dave Barr.

Answers

Chapter 1 Sequences and Series

1.1 Arithmetic Sequences, pages 16 to 21

- **1. a)** arithmetic sequence: $t_1 = 16$, d = 16; next three terms: 96, 112, 128
 - **b)** not arithmetic
 - c) arithmetic sequence: $t_1 = -4$, d = -3; next three terms: -19, -22, -25
 - d) arithmetic sequence: $t_1 = 3$, d = -3; next three terms: -12, -15, -18

2. a) 5, 8, 11, 14 b) -1, -5, -9, -13 c) 4, $\frac{21}{5}$, $\frac{22}{5}$, $\frac{23}{5}$ d) 1.25, 1.00, 0.75, 0.50

- **3.** a) $t_1 = 11$ **b)** $t_7 = 29$ **c)** $t_{14} = 50$
- **4. a)** 7, 11, 15, 19, 23; $t_1 = 7, d = 4$
- **b)** 6, $\frac{9}{2}$, 3, $\frac{3}{2}$; $t_1 = 6$, $d = -\frac{3}{2}$
- **c)** 2, 4, 6, 8, 10; $t_1 = 2, d = 2$

5. a) 30 b) 82 c) 26 d) 17
6. a)
$$t_2 = 15, t_2 = 24$$
 b) $t_2 = 19, t_2 = 30$

6. a)
$$t_2 = 15, t_3 = 24$$

c) $t_2 = 37, t_3 = 32$

- c) $t_2 = 37, t_3 = 32$ 7. a) 5, 8, 11, 14, 17 b) $t_n = 3n + 2$
 - **c)** $t_{50} = 152, t_{200} = 602$
 - d) The general term is a linear equation of the form y = mx + b, where t_n = y and n = x. Therefore, t_n = 3n + 2 has a slope of 3.
 - e) The constant value of 2 in the general term is the *y*-intercept of 2.
- **8.** A and C; both sequences have a natural-number value for *n*.
- **9.** 5
- **10.** $t_n = -3yn + 8y; t_{15} = -37y$

11.
$$x = -16$$
; first three terms: -78, -116, -154

- **12.** z = 2y x
- **13. a)** $t_n = 6n + 4$ **b)** 58 **c)** 12
- **14. a)** 0, 8, 16, 24
 - **b)** 32 players
 - **c)** $t_n = 8n 8$
 - **d)** 12:16
 - e) Example: weather, all foursomes starting on time, etc.
- 15. 21 square inches

16. a) $t_n = 2n - 1$ b) 51st day

- c) Susan continues the program until she accomplishes her goal.
- Carbon Atoms
 1
 2
 3
 4

 Hydrogen Atoms
 4
 6
 8
 10
 - **b)** $t_n = 2n + 2$ or H = 2C + 2
 - **c)** 100 carbon atoms

18.

Multiples of	28	7	15
Between	1 and 1000	500 and 600	50 and 500
First Term, t ₁	28	504	60
Common Difference, <i>d</i>	28	7	15
nth Term, t _n	980	595	495
General Term	$t_n = 28n$	$t_n = 7n + 497$	$t_n = 15n + 45$
Number of Terms	35	14	30

19. a) 14.7, 29.4, 44.1, 58.8; $t_n = 14.7n$, where *n* represents every increment of 30 ft in depth.

b) 490 psi at 1000 ft and 980 psi at 2000 ft

- a) 14.7
- **e)** 14.7
- **f)** The *y*-intercept represents the first term of the sequence and the slope represents the common difference.
- **20.** Other lengths are 6 cm, 12 cm, and 18 cm. Add the four terms to find the perimeter. Replace t_2 with $t_1 + d$, t_3 with $t_1 + 2d$, and t_4 with $t_1 + 3d$. Solve for *d*.
- **21. a)** 4, 8, 12, 16, 20 **b)** $t_n = 4n$ **c)** 320 min
- **22.** –29 beekeepers
- 23. 5.8 million carats. This value represents the increase of diamond carats mined each year.24. 1606.5 m
- **24.** 1696.5 m
- **25.** a) 13:54, 13:59, 14:04, 14:09, 14:14; $t_1 = 13:54$, d = 0:05
 - **b)** $t_n = 0.05n + 13.49$
 - c) Assume that the arithmetic sequence of times continues.
 - **d)** 15:49