Key Ideas

- A sequence is an ordered list of elements.
- Elements within the range of the sequence are called terms of the sequence.
- To describe any term of a sequence, an expression is used for t_{n}, where $n \in N$. This term is called the general term.
- In an arithmetic sequence, each successive term is formed by adding a constant. This constant is called the common difference.
- The general term of an arithmetic sequence is
$t_{n}=t_{1}+(n-1) d$
where t_{1} is the first term
n is the number of terms $(n \in N)$
d is the common difference
t_{n} is the general term or nth term

Check Your Understanding

Practise

1. Identify the arithmetic sequences from the following sequences. For each arithmetic sequence, state the value of t_{1}, the value of d, and the next three terms.
a) $16,32,48,64,80, \ldots$
b) $2,4,8,16,32, \ldots$
c) $-4,-7,-10,-13,-16, \ldots$
d) $3,0,-3,-6,-9, \ldots$
2. Write the first four terms of each arithmetic sequence for the given values of t_{1} and d.
a) $t_{1}=5, d=3$
b) $t_{1}=-1, d=-4$
c) $t_{1}=4, d=\frac{1}{5}$
d) $t_{1}=1.25, d=-0.25$
3. For the sequence defined by $t_{n}=3 n+8$, find each indicated term.
a) t_{1}
b) t_{7}
c) t_{14}
4. For each arithmetic sequence determine the values of t_{1} and d. State the missing terms of the sequence.
a) ■, ■, $\square, 19,23$
b) $\square, \square, 3, \frac{3}{2}$
c) $\square, 4, \rrbracket, \rrbracket, 10$
5. Determine the position of the given term to complete the following statements.
a) 170 is the th term of $-4,2,8, \ldots$
b) - 14 is the th term of $2 \frac{1}{5}, 2,1 \frac{4}{5}, \ldots$
c) 97 is the th term of $-3,1,5, \ldots$
d) -10 is the th term of $14,12.5,11, \ldots$
6. Determine the second and third terms of an arithmetic sequence if
a) the first term is 6 and the fourth term is 33
b) the first term is 8 and the fourth term is 41
c) the first term is 42 and the fourth term is 27
7. The graph of an arithmetic sequence is shown.

a) What are the first five terms of the sequence?
b) Write the general term of this sequence.
c) What is t_{50} ? t_{200} ?
d) Describe the relationship between the slope of the graph and your formula from part b).
e) Describe the relationship between the y-intercept and your formula from part b).

Apply

8. Which arithmetic sequence(s) contain the term 34 ? Justify your conclusions.
A $t_{\mathrm{n}}=6+(n-1) 4$
B $t_{\mathrm{n}}=3 n-1$
C $t_{1}=12, d=5.5$
D 3, 7, 11, ...
9. Determine the first term of the arithmetic sequence in which the 16 th term is 110 and the common difference is 7 .
10. The first term of an arithmetic sequence is $5 y$ and the common difference is $-3 y$. Write the equations for t_{n} and t_{15}.
11. The terms $5 x+2,7 x-4$, and $10 x+6$ are consecutive terms of an arithmetic sequence. Determine the value of x and state the three terms.
12. The numbers represented by x, y, and z are the first three terms of an arithmetic sequence. Express z in terms of x and y.
13. Each square in this pattern has a side length of 1 unit. Assume the pattern continues.

a) Write an equation in which the perimeter is a function of the figure number.
b) Determine the perimeter of Figure 9.
c) Which figure has a perimeter of 76 units?
14. The Wolf Creek Golf Course, located near Ponoka, Alberta, has been the site of the Canadian Tour Alberta Open Golf Championship. This tournament has a maximum entry of 132 players. The tee-off times begin at 8:00 and are 8 min apart.
a) The tee-off times generate an arithmetic sequence. Write the first four terms of the arithmetic sequence, if the first tee-off time of 8:00 is considered to be at time 0 .
b) Following this schedule, how many players will be on the course after 1 h , if the tee-off times are for groups of four?
c) Write the general term for the sequence of tee-off times.
d) At what time will the last group tee-off?
e) What factors might affect the prearranged tee-off time?

Did You Know?

The first championship at Wolf Creek was held in 1987 and has attracted PGA professionals, including Mike Weir and Dave Barr.

Chapter 1 Sequences and Series

1.1 Arithmetic Sequences, pages 16 to 21

1. a) arithmetic sequence: $t_{1}=16, d=16$; next three terms: 96, 112, 128
b) not arithmetic
c) arithmetic sequence: $t_{1}=-4, d=-3$; next three terms: $-19,-22,-25$
d) arithmetic sequence: $t_{1}=3, d=-3$; next three terms: $-12,-15,-18$
2. a) $5,8,11,14$
b) $-1,-5,-9,-13$
c) $4, \frac{21}{5}, \frac{22}{5}, \frac{23}{5}$
d) $1.25,1.00,0.75,0.50$
$\begin{array}{lll}\text { 3. a) } t_{1}=11 & \text { b) } t_{7}=29 & \text { c) } t_{14}=50\end{array}$
3. a) $7,11,15,19,23 ; t_{1}=7, d=4$
b) $6, \frac{9}{2}, 3, \frac{3}{2} ; t_{1}=6, d=-\frac{3}{2}$
c) $2,4,6,8,10 ; t_{1}=2, d=2$
4. a) 30
b) 82
c) 26
d) 17
5. a) $t_{2}=15, t_{3}=24$
b) $t_{2}=19, t_{3}=30$
c) $t_{2}=37, t_{3}=32$
6. a) $5,8,11,14,17 \quad$ b) $t_{n}=3 n+2$
c) $t_{50}=152, t_{200}=602$
d) The general term is a linear equation of the form $y=m x+b$, where $t_{n}=y$ and $n=x$. Therefore, $t_{n}=3 n+2$ has a slope of 3 .
e) The constant value of 2 in the general term is the y-intercept of 2 .
7. A and C; both sequences have a natural-number value for n.
8. 5
9. $t_{n}=-3 y n+8 y ; t_{15}=-37 y$
10. $x=-16$; first three terms: $-78,-116,-154$
11. $z=2 y-x$
12. a) $t_{n}=6 n+$
b) 58
c) 12
13. a) $0,8,16,24$
b) 32 players
c) $t_{n}=8 n-8$
d) $12: 16$
e) Example: weather, all foursomes starting on time, etc.
14. 21 square inches
15. a) $t_{n}=2 n-1$
b) 51st day
c) Susan continues the program until she accomplishes her goal.
16. a)

Carbon Atoms	1	2	3	4
Hydrogen Atoms	4	6	8	10

b) $t_{n}=2 n+2$ or $H=2 C+2$
c) 100 carbon atoms
18.

Multiples of	28	7	15
Between	1 and 1000	500 and 600	50 and 500
First Term, t_{1}	28	504	60
Common Difference, \boldsymbol{d}	28	7	15
nth Term, t_{n}	980	595	495
General Term	$t_{n}=28 n$	$t_{n}=7 n+497$	$t_{n}=15 n+45$
Number of Terms	35	14	30

19. a) $14.7,29.4,44.1,58.8 ; t_{n}=14.7 n$, where n represents every increment of 30 ft in depth.
b) 490 psi at 1000 ft and 980 psi at 2000 ft
c)

d) 14.7 psi
e) 14.7
f) The y-intercept represents the first term of the sequence and the slope represents the common difference.
20. Other lengths are $6 \mathrm{~cm}, 12 \mathrm{~cm}$, and 18 cm . Add the four terms to find the perimeter. Replace t_{2} with $t_{1}+d$, t_{3} with $t_{1}+2 d$, and t_{4} with $t_{1}+3 d$. Solve for d.
21.

a) $4,8,12,16,20$
b) $t_{n}=4 n$
c) 320 min
22. -29 beekeepers
23. 5.8 million carats. This value represents the increase of diamond carats mined each year.
24. 1696.5 m
25. a) $13: 54,13: 59,14: 04,14: 09,14: 14 ; t_{1}=13: 54$, $d=0: 05$
b) $t_{n}=0: 05 n+13: 49$
c) Assume that the arithmetic sequence of times continues.
d) $15: 49$

