Your Turn

The graph of the function $y=g(x)$ represents a transformation of the graph of $y=f(x)$. State the equation of the transformed function. Explain your answer.

Key Ideas

- Write the function in the form $y=a f(b(x-h))+k$ to better identify the transformations.
- Stretches and reflections may be performed in any order before translations.
- The parameters a, b, h, and k in the function $y=a f(b(x-h))+k$ correspond to the following transformations:
- a corresponds to a vertical stretch about the x-axis by a factor of $|a|$.

If $a<0$, then the function is reflected in the x-axis.

- b corresponds to a horizontal stretch about the y-axis by a factor of $\frac{1}{|b|}$.

If $b<0$, then the function is reflected in the y-axis.

- h corresponds to a horizontal translation.
- k corresponds to a vertical translation.

Check Your Understanding

Practise

1. The function $y=x^{2}$ has been transformed to $y=a f(b x)$. Determine the equation of each transformed function.
a) Its graph is stretched horizontally about the y-axis by a factor of 2 and then reflected in the x-axis.
b) Its graph is stretched horizontally about the y-axis by a factor of $\frac{1}{4}$, reflected in the y-axis, and then stretched vertically about the x-axis by a factor of $\frac{1}{4}$.
2. The function $y=f(x)$ is transformed to the function $g(x)=-3 f(4 x-16)-10$. Copy and complete the following statements by filling in the blanks.
The function $f(x)$ is transformed to the function $g(x)$ by a horizontal stretch about the \square by a factor of \square. It is vertically stretched about the \square by a factor of \square. It is reflected in the $\boldsymbol{\square}$, and then translated units to the right and \square units down.
3. Copy and complete the table by describing the transformations of the given functions, compared to the function $y=f(x)$.

4. Using the graph of $y=f(x)$, write the equation of each transformed graph in the form $y=a f(b(x-h))+k$.

a)

b)

5. For each graph of $y=f(x)$, sketch the graph of the combined transformations. Show each transformation in the sequence.
a)

- vertical stretch about the x-axis by a factor of 2
- horizontal stretch about the y-axis by a factor of $\frac{1}{3}$
- translation of 5 units to the left and 3 units up
b)

- vertical stretch about the x-axis by a factor of $\frac{3}{4}$
- horizontal stretch about the y-axis by a factor of 3
- translation of 3 units to the right and 4 units down

6. The key point $(-12,18)$ is on the graph of $y=f(x)$. What is its image point under each transformation of the graph of $f(x)$?
a) $y+6=f(x-4)$
b) $y=4 f(3 x)$
c) $y=-2 f(x-6)+4$
d) $y=-2 f\left(-\frac{2}{3} x-6\right)+4$
e) $y+3=-\frac{1}{3} f(2(x+6))$

Apply

7. Describe, using an appropriate order, how to obtain the graph of each function from the graph of $y=f(x)$. Then, give the mapping for the transformation.
a) $y=2 f(x-3)+4$
b) $y=-f(3 x)-2$
c) $y=-\frac{1}{4} f(-(x+2))$
d) $y-3=-f(4(x-2))$
e) $y=-\frac{2}{3} f\left(-\frac{3}{4} x\right)$
f) $3 y-6=f(-2 x+12)$
8. Given the function $y=f(x)$, write the equation of the form $y-k=a f(b(x-h))$ that would result from each combination of transformations.
a) a vertical stretch about the x-axis by a factor of 3 , a reflection in the x-axis, a horizontal translation of 4 units to the left, and a vertical translation of 5 units down
b) a horizontal stretch about the y-axis by a factor of $\frac{1}{3}$, a vertical stretch about the x-axis by a factor of $\frac{3}{4}$, a reflection in both the x-axis and the y-axis, and a translation of 6 units to the right and 2 units up
9. The graph of $y=f(x)$ is given. Sketch the graph of each of the following functions.

a) $y+2=f(x-3)$
b) $y=-f(-x)$
c) $y=f(3(x-2))+1$
d) $y=3 f\left(\frac{1}{3} x\right)$
e) $y+2=-3 f(x+4)$
f) $y=\frac{1}{2} f\left(-\frac{1}{2}(x+2)\right)-1$
10. The graph of the function $y=g(x)$ represents a transformation of the graph of $y=f(x)$. Determine the equation of $g(x)$ in the form $y=a f(b(x-h))+k$.
a)

b)

c)

11. Given the function $f(x)$, sketch the graph of the transformed function $g(x)$.
a) $f(x)=x^{2}, g(x)=-2 f(4(x+2))-2$
b) $f(x)=|x|, g(x)=-2 f(-3 x+6)+4$
c) $f(x)=x, g(x)=-\frac{1}{3} f(-2(x+3))-2$

C4

C5 a) $t_{n}=4 n-14$
b) $t_{n}=-4 n+14$
c) They are reflections of each other in the x-axis.

1.3 Combining Transformations, pages 38 to 43

1. a) $y=-f\left(\frac{1}{2} x\right)$ or $y=-\frac{1}{4} x^{2}$
b) $y=\frac{1}{4} f(-4 x)$ or $y=4 x^{2}$
2. The function $f(x)$ is transformed to the function $g(x)$ by a horizontal stretch about the y-axis by a factor of $\frac{1}{4}$. It is vertically stretched about the x-axis by a factor of 3 . It is reflected in the x-axis, and then translated 4 units right and 10 units down.
3.

Function			흔 준 운 든 운		
$y-4=f(x-5)$	none	none	none	4	5
$y+5=2 f(3 x)$	none	2	$\frac{1}{3}$	-5	none
$y=\frac{1}{2} f\left(\frac{1}{2}(x-4)\right)$	none	$\frac{1}{2}$	2	none	4
$y+2=-3 f(2(x+2))$	x-axis	3	$\frac{1}{2}$	-2	-2

4. a) $y=f(-(x+2))-2 \quad$ b) $y=f(2(x+1))-4$
5. a)

b)

6. a) $(-8,12)$
b) $(-4,72)$
c) $(-6,-32)$
e) $(-12,-9)$
7. a) vertical stretch by a factor of 2 and translation of 3 units right and 4 units up;
$(x, y) \rightarrow(x+3,2 y+4)$
b) horizontal stretch by a factor of $\frac{1}{3}$, reflection in the x-axis, and translation of 2 units down;
$(x, y) \rightarrow\left(\frac{1}{3} x,-y-2\right)$
c) reflection in the y-axis, reflection in the x-axis, vertical stretch by a factor of $\frac{1}{4}$, and translation of 2 units left; $(x, y) \rightarrow\left(-x-2,-\frac{1}{4} y\right)$
d) horizontal stretch by a factor of $\frac{1}{4}$, reflection in the x-axis, and translation of 2 units right and 3 units up; $(x, y) \rightarrow\left(\frac{1}{4} x+2,-y+3\right)$
e) reflection in the y-axis, horizontal stretch by a factor of $\frac{4}{3}$, reflection in the x-axis, and vertical stretch by a factor of $\frac{2}{3} ;(x, y) \rightarrow\left(-\frac{4}{3} x,-\frac{2}{3} y\right)$
f) reflection in the y-axis, horizontal stretch by a factor of $\frac{1}{2}$, vertical stretch by a factor of $\frac{1}{3}$, and translation of 6 units right and 2 units up;
$(x, y) \rightarrow\left(-\frac{1}{2} x+6, \frac{1}{3} y+2\right)$
8. a) $y+5=-3 f(x+4) \quad$ b) $y-2=-\frac{3}{4} f(-3(x-6))$
9. a)

b)

c)

d)

e)

f)

10. a) $y=-3 f(x-8)+10$
b) $y=-2 f(x-3)+2$
c) $y=-\frac{1}{2} f(-2(x+4))+7$
11. a)

b)

c)

12. a) $A^{\prime}(-11,-2), B^{\prime}(-7,6), C^{\prime}(-3,4), D^{\prime}(-1,5), \mathrm{E}^{\prime}(3,-2)$
b) $y=-f\left(\frac{1}{2}(x+3)\right)+4$
13. a) The graphs are in two locations because the transformations performed to obtain Graph 2 do not match those in $y=|2 x-6|+2$. Gil forgot to factor out the coefficient of the x-term, 2 , from -6 . The horizontal translation should have been 3 units right, not 6 units.
b) He should have rewritten the function as $y=|2(x-3)|+2$.
14. a)

b) $y=-\left(\frac{1}{2}(x+6)\right)^{2}+6$
15. a) $(-a, 0),(0,-b)$
b) $(2 a, 0),(0,2 b)$
c) and d) There is not enough information to determine the locations of the new intercepts. When a transformation involves translations, the locations of the new intercepts will vary with different base functions.
16. a) $A=-2 x^{3}+18 x$
b) $A=-\frac{1}{8} x^{3}+18 x$
c) For $(2,5)$, the area of the rectangle in part a) is 20 square units.
$A=-2 x^{3}+18 x$
$A=-2(2)^{3}+18(2)$
$A=20$
For (8,5), the area of the rectangle in part b) is 80 square units.

$$
\begin{aligned}
& A=-\frac{1}{8} x^{3}+18 x \\
& A=-\frac{1}{8}(8)^{3}+18(8) \\
& A=80
\end{aligned}
$$

17. $y=36(x-2)^{2}+6(x-2)-2$
18. Example: vertical stretches and horizontal stretches followed by reflections
C1 Step 1 They are reflections in the axes. 1: $y=x+3,2: y=-x-3,3: y=x-3$
Step 2 They are vertical translations coupled with reflections. 1: $y=x^{2}+1,2: y=x^{2}-1,3: y=-x^{2}, 4$: $y=-x^{2}-1$
C2 a) The cost of making $b+12$ bracelets, and it is a horizontal translation.
b) The cost of making b bracelets plus 12 more dollars, and it is a vertical translation.
c) Triple the cost of making b bracelets, and it is a vertical stretch.
d) The cost of making $\frac{b}{2}$ bracelets, and it is a horizontal stretch.
C3 $y=2(x-3)^{2}+1$; a vertical stretch by a factor of 2 and a translation of 3 units right and 1 unit up
C4 a) H is repeated; J is transposed; K is repeated and transposed
b) H is in retrograde; J is inverted; K is in retrograde and inverted
c) H is inverted, repeated, and transposed; J is in retrograde inversion and repeated; K is in retrograde and transposed

1.4 Inverse of a Relation, pages 51 to 55

1. a)

b)

