Your Turn

The graph of the function y = g(x)represents a transformation of the graph of y = f(x). State the equation of the transformed function. Explain your answer.

Key Ideas

- Write the function in the form y = af(b(x h)) + k to better identify the transformations.
- Stretches and reflections may be performed in any order before translations.
- The parameters *a*, *b*, *h*, and *k* in the function y = af(b(x h)) + k correspond to the following transformations:
 - *a* corresponds to a vertical stretch about the *x*-axis by a factor of |*a*|.
 If *a* < 0, then the function is reflected in the *x*-axis.
 - *b* corresponds to a horizontal stretch about the *y*-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the function is reflected in the *y*-axis.
 - *h* corresponds to a horizontal translation.
 - *k* corresponds to a vertical translation.

Check Your Understanding

Practise

- **1.** The function $y = x^2$ has been transformed to y = af(bx). Determine the equation of each transformed function.
 - a) Its graph is stretched horizontally about the *y*-axis by a factor of 2 and then reflected in the *x*-axis.
 - **b)** Its graph is stretched horizontally about the *y*-axis by a factor of $\frac{1}{4}$, reflected in the *y*-axis, and then stretched vertically about the *x*-axis by a factor of $\frac{1}{4}$.
- **2.** The function y = f(x) is transformed to the function g(x) = -3f(4x 16) 10. Copy and complete the following statements by filling in the blanks.

The function f(x) is transformed to the function g(x) by a horizontal stretch about the \blacksquare by a factor of \blacksquare . It is vertically stretched about the \blacksquare by a factor of \blacksquare . It is reflected in the \blacksquare , and then translated \blacksquare units to the right and \blacksquare units down.

3. Copy and complete the table by describing the transformations of the given functions, compared to the function y = f(x).

Function	Reflections	Vertical Stretch Factor	Horizontal Stretch Factor	Vertical Translation	Horizontal Translation
y-4=f(x-5)					
	4 4				1
y + 5 = 2f(3x)					
$y + 5 = 2f(3x)$ $y = \frac{1}{2}f\left(\frac{1}{2}(x-4)\right)$					

4. Using the graph of y = f(x), write the equation of each transformed graph in the form y = af(b(x - h)) + k.

5. For each graph of y = f(x), sketch the graph of the combined transformations. Show each transformation in the sequence.

- vertical stretch about the *x*-axis by a factor of 2
- horizontal stretch about the *y*-axis by a factor of $\frac{1}{3}$
- translation of 5 units to the left and 3 units up

- vertical stretch about the *x*-axis by a factor of $\frac{3}{4}$
- horizontal stretch about the *y*-axis by a factor of 3
- translation of 3 units to the right and 4 units down
- **6.** The key point (-12, 18) is on the graph of y = f(x). What is its image point under each transformation of the graph of f(x)?
 - a) y + 6 = f(x 4)
 - **b)** y = 4f(3x)
 - c) y = -2f(x 6) + 4

d)
$$y = -2f\left(-\frac{2}{3}x - 6\right) + 4$$

e)
$$y + 3 = -\frac{1}{3}f(2(x+6))$$

Apply

- 7. Describe, using an appropriate order, how to obtain the graph of each function from the graph of y = f(x). Then, give the mapping for the transformation.
 - a) y = 2f(x 3) + 4

b)
$$y = -f(3x) - 2$$

c)
$$y = -\frac{1}{4}f(-(x+2))$$

d)
$$y - 3 = -f(4(x - 2))$$

e)
$$y = -\frac{2}{3}f\left(-\frac{3}{4}x\right)$$

f)
$$3y - 6 = f(-2x + 12)$$

- **8.** Given the function y = f(x), write the equation of the form y k = af(b(x h)) that would result from each combination of transformations.
 - a) a vertical stretch about the x-axis by a factor of 3, a reflection in the x-axis, a horizontal translation of 4 units to the left, and a vertical translation of 5 units down
 - **b)** a horizontal stretch about the *y*-axis by a factor of $\frac{1}{3}$, a vertical stretch about the *x*-axis by a factor of $\frac{3}{4}$, a reflection in both the *x*-axis and the *y*-axis, and a translation of 6 units to the right and 2 units up
- **9.** The graph of y = f(x) is given. Sketch the graph of each of the following functions.

10. The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k.

- **11.** Given the function f(x), sketch the graph of the transformed function g(x).
 - a) $f(x) = x^2$, g(x) = -2f(4(x + 2)) 2
 - **b)** f(x) = |x|, g(x) = -2f(-3x + 6) + 4
 - c) $f(x) = x, g(x) = -\frac{1}{3}f(-2(x+3)) 2$

1.3 Combining Transformations, pages 38 to 43

1. a)
$$y = -f(\frac{1}{2}x)$$
 or $y = -\frac{1}{4}x^{2}$
b) $y = \frac{1}{4}f(-4x)$ or $y = 4x^{2}$

2. The function f(x) is transformed to the function g(x) by a horizontal stretch about the *y*-axis by a factor of $\frac{1}{4}$. It is vertically stretched about the *x*-axis by a factor of 3. It is reflected in the *x*-axis, and then translated 4 units right and 10 units down.

- 7. a) vertical stretch by a factor of 2 and translation of 3 units right and 4 units up; $(x, y) \rightarrow (x + 3, 2y + 4)$
 - **b)** horizontal stretch by a factor of $\frac{1}{3}$, reflection in the *x*-axis, and translation of 2 units down; (*x*, *y*) $\rightarrow \left(\frac{1}{3}x, -y - 2\right)$
 - c) reflection in the *y*-axis, reflection in the *x*-axis, vertical stretch by a factor of $\frac{1}{4}$, and translation of

2 units left; $(x, y) \rightarrow \left(-x - 2, -\frac{1}{4}y\right)$

- **d)** horizontal stretch by a factor of $\frac{1}{4}$, reflection in the *x*-axis, and translation of 2 units right and 3 units up; $(x, y) \rightarrow (\frac{1}{4}x + 2, -y + 3)$
- e) reflection in the y-axis, horizontal stretch by a factor of ⁴/₃, reflection in the x-axis, and vertical stretch by a factor of ²/₃; (x, y) → (-⁴/₃x, -²/₃y)
 f) reflection in the y-axis, horizontal stretch by a
- f) reflection in the *y*-axis, horizontal stretch by a factor of $\frac{1}{2}$, vertical stretch by a factor of $\frac{1}{3}$, and translation of 6 units right and 2 units up; $(x, y) \rightarrow \left(-\frac{1}{2}x + 6, \frac{1}{2}y + 2\right)$

8. a)
$$y + 5 = -3f(x + 4)$$
 b) $y - 2 = -\frac{3}{4}f(-3(x - 6))$

- b) $y = -f(\frac{1}{2}(x+3)) + 4$ **13.** a) The graphs are in two locations because the
- transformations performed to obtain Graph 2 do not match those in y = |2x - 6| + 2. Gil forgot to factor out the coefficient of the *x*-term, 2, from -6. The horizontal translation should have been 3 units right, not 6 units.
 - **b)** He should have rewritten the function as y = |2(x 3)| + 2.

- 15. a) (-a, 0), (0, -b) b) (2a, 0), (0, 2b)
 c) and d) There is not enough information to determine the locations of the new intercepts. When a transformation involves translations, the locations of the new intercepts will vary with different base functions.
- **16. a)** $A = -2x^3 + 18x$
- Bx **b)** $A = -\frac{1}{8}x^3 + 18x$
 - c) For (2, 5), the area of the rectangle in part a) is 20 square units. $A = -2x^3 + 18x$ A = 20For (8, 5), the area of the rectangle in part b) is 80 square units. $A = -\frac{1}{8}x^3 + 18x$ $A = -\frac{1}{8}(8)^3 + 18(8)$ A = 80
- **17.** $y = 36(x-2)^2 + 6(x-2) 2^{-1}$
- **18.** Example: vertical stretches and horizontal stretches followed by reflections
- **C1** Step 1 They are reflections in the axes. 1: y = x + 3, 2: y = -x - 3, 3: y = x - 3Step 2 They are vertical translations coupled with reflections. 1: $y = x^2 + 1$, 2: $y = x^2 - 1$, 3: $y = -x^2$, 4: $y = -x^2 - 1$
- **C2 a)** The cost of making b + 12 bracelets, and it is a horizontal translation.
 - **b)** The cost of making *b* bracelets plus 12 more dollars, and it is a vertical translation.
 - c) Triple the cost of making *b* bracelets, and it is a vertical stretch.
 - d) The cost of making $\frac{b}{2}$ bracelets, and it is a horizontal stretch.
- **C3** $y = 2(x 3)^2 + 1$; a vertical stretch by a factor of 2 and a translation of 3 units right and 1 unit up
- $\label{eq:c4-a} {\bf H} \mbox{ is repeated}; \mbox{ J is transposed}; \mbox{ K is repeated and transposed}$
 - **b)** H is in retrograde; J is inverted; K is in retrograde and inverted
 - c) H is inverted, repeated, and transposed; J is in retrograde inversion and repeated; K is in retrograde and transposed

1.4 Inverse of a Relation, pages 51 to 55

