Key Ideas

- You can compare and order radicals using a variety of strategies:
- Convert unlike radicals to entire radicals. If the radicals have the same index, the radicands can be compared.
- Compare the coefficients of like radicals.
- Compare the indices of radicals with equal radicands.
- When adding or subtracting radicals, combine coefficients of like radicals.

In general, $m \sqrt[r]{a}+n \sqrt[r]{a}=(m+n) \sqrt[r]{a}$, where r is a natural number, and m, n, and a are real numbers. If r is even, then $a \geq 0$.

- A radical is in simplest form if the radicand does not contain a fraction or any factor which may be removed, and the radical is not part of the denominator of a fraction.

$$
\text { For example, } \begin{aligned}
5 \sqrt{40} & =5 \sqrt{4(10)} \\
& =5 \sqrt{4}(\sqrt{10}) \\
& =5(2) \sqrt{10} \\
& =10 \sqrt{10}
\end{aligned}
$$

- When a radicand contains variables, identify the values of the variables that make the radical a real number by considering the index and the radicand:
- If the index is an even number, the radicand must be non-negative.

For example, in $\sqrt{3 n}$, the index is even. So, the radicand must be non-negative.

$$
\begin{aligned}
3 n & \geq 0 \\
n & \geq 0
\end{aligned}
$$

- If the index is an odd number, the radicand may be any real number.

For example, in $\sqrt[3]{x}$, the index is odd. So, the radicand, x, can be any real number-positive, negative, or zero.

Check Your Understanding

Practise

1. Copy and complete the table.

Mixed Radical Form	Entire Radical Form
$4 \sqrt{7}$	
	$\sqrt{50}$
$-11 \sqrt{8}$	
	$-\sqrt{200}$

2. Express each radical as a mixed radical in simplest form.
a) $\sqrt{56}$
b) $3 \sqrt{75}$
c) $\sqrt[3]{24}$
d) $\sqrt{c^{3} d^{2}}, c \geq 0, d \geq 0$
3. Write each expression in simplest form. Identify the values of the variable for which the radical represents a real number.
a) $3 \sqrt{8 m^{4}}$
b) $\sqrt[3]{24 q^{5}}$
c) $-2 \sqrt[5]{160 s^{5} t^{6}}$
4. Copy and complete the table. State the values of the variable for which the radical represents a real number.

Mixed Radical Form	Entire Radical Form
$3 n \sqrt{5}$	$\sqrt[3]{-432}$
$\frac{1}{2 a} \sqrt[3]{7 a}$	$\sqrt[3]{128 x^{4}}$

5. Express each pair of terms as like radicals. Explain your strategy.
a) $15 \sqrt{5}$ and $8 \sqrt{125}$
b) $8 \sqrt{112 z^{8}}$ and $48 \sqrt{7 z^{4}}$
c) $-35 \sqrt[4]{w^{2}}$ and $3 \sqrt[4]{81 w^{10}}$
d) $6 \sqrt[3]{2}$ and $6 \sqrt[3]{54}$
6. Order each set of numbers from least to greatest.
a) $3 \sqrt{6}, 10$, and $7 \sqrt{2}$
b) $-2 \sqrt{3},-4,-3 \sqrt{2}$, and $-2 \sqrt{\frac{7}{2}}$
c) $\sqrt[3]{21}, 3 \sqrt[3]{2}, 2.8,2 \sqrt[3]{5}$
7. Verify your answer to \#6b) using a different method.
8. Simplify each expression.
a) $-\sqrt{5}+9 \sqrt{5}-4 \sqrt{5}$
b) $1.4 \sqrt{2}+9 \sqrt{2}-7$
c) $\sqrt[4]{11}-1-5 \sqrt[4]{11}+15$
d) $-\sqrt{6}+\frac{9}{2} \sqrt{10}-\frac{5}{2} \sqrt{10}+\frac{1}{3} \sqrt{6}$
9. Simplify.
a) $3 \sqrt{75}-\sqrt{27}$
b) $2 \sqrt{18}+9 \sqrt{7}-\sqrt{63}$
c) $-8 \sqrt{45}+5.1-\sqrt{80}+17.4$
d) $\frac{2}{3} \sqrt[3]{81}+\frac{\sqrt[3]{375}}{4}-4 \sqrt{99}+5 \sqrt{11}$
10. Simplify each expression. Identify any restrictions on the values for the variables.
a) $2 \sqrt{a^{3}}+6 \sqrt{a^{3}}$
b) $3 \sqrt{2 x}+3 \sqrt{8 x}-\sqrt{x}$
c) $-4 \sqrt[3]{625 r}+\sqrt[3]{40 r^{4}}$
d) $\frac{w}{5} \sqrt[3]{-64}+\frac{\sqrt[3]{512 w^{3}}}{5}-\frac{2}{5} \sqrt{50 w}-4 \sqrt{2 w}$

Apply

11. The air pressure, p, in millibars (mbar) at the centre of a hurricane, and wind speed, w, in metres per second, of the hurricane are related by the formula $w=6.3 \sqrt{1013-p}$. What is the exact wind speed of a hurricane if the air pressure is 965 mbar ?

12. Saskatoon artist Jonathan Forrest's painting, Clincher, contains geometric shapes. The isosceles right triangle at the top right has legs that measure approximately 12 cm . What is the length of the hypotenuse? Express your answer as a radical in simplest form.

Clincher, by Jonathan Forrest Saskatoon, Saskatchewan
d) $y=\frac{1}{4}(x+8)^{2}+4$; the shape of the graph of $y=\frac{1}{4}(x+8)^{2}+4$ is wider by a multiplication of the y-values by a factor of $\frac{1}{4}$ and translated 8 units to the left and 4 units up.
6. a) 22 m
b) 2 m
c) 4 s
7. In order: roots, zeros, x-intercepts
8. a) $(3 x+4)(3 x-2) \quad$ b) $(4 r-9 s)(4 r+9 s)$
c) $(x+3)(2 x+9)$
d) $(x y+4)(x y-9)$
e) $5(a+b)(13 a+b)$
f) $(11 r+20)(11 r-20)$
9. $7,8,9$ or $-9,-8,-7$
10. 15 seats per row, 19 rows
11. 3.5 m
12. Example: Dallas did not divide the 2 out of the -12 in the first line or multiply the 36 by 2 and thus add 72 to the right side instead of 36 in line two. Doug made a sign error on the -12 in the first line. He should have calculated 200 as the value in the radical, not 80 . When he simplified, he took $\sqrt{80}$ divided by 4 to get $\sqrt{20}$, which is not correct.
The correct answer is $3 \pm \frac{5}{\sqrt{2}}$ or $\frac{6 \pm 5 \sqrt{2}}{2}$.
13. a) Example: square root, $x= \pm \sqrt{2}$
b) Example: factor, $m=2$ and $m=13$
c) Example: factor, $s=-5$ and $s=7$
d) Example: use quadratic formula, $x=-\frac{1}{16}$ and $x=3$
14. a) two distinct real roots
b) one distinct real root
c) no real roots
15. a) $85=x^{2}+(x+1)^{2}$
b) Example: factoring, $x=-7$ and $x=6$
c) The top is $7-\mathrm{in}$. by $7-\mathrm{in}$. and the bottom is 6-in. by 6-in.
d) Example: Negative lengths are not possible.

Unit 2 Test, pages 266 to 267

1. A
2. D
3. D
4. B
5. B
6. 76
7. $\$ 900$
8. 0.18
9. a) 53.5 cm
b) 75.7 cm
c) No
10. a) 47.5 m
b) 6.1 s
11. 12 cm by 12 cm
12. a) $3 x^{2}+6 x-672=0$
b) $x=-16$ and $x=14$
c) 14 in., 15 in., and 16 in.
d) Negative lengths are not possible.

Chapter 5 Radical Expressions and Equations

5.1 Working With Radicals, pages 278 to 281

Mixed Radical Form	Entire Radical Form
$4 \sqrt{7}$	$\sqrt{112}$
$5 \sqrt{2}$	$\sqrt{50}$
$-11 \sqrt{8}$	$-\sqrt{968}$
$-10 \sqrt{2}$	$-\sqrt{200}$

2. a) $2 \sqrt{14}$
b) $15 \sqrt{3}$
c) $2 \sqrt[3]{3}$
d) $c d \sqrt{c}$
3. a) $6 m^{2} \sqrt{2}, m \in R$
b) $2 q \sqrt[3]{3 q^{2}}, q \in \mathrm{R}$
c) $-4 s t \sqrt[5]{5 t}, s, t \in \mathrm{R}$
4.

Mixed Radical Form	Entire Radical Form
$3 n \sqrt{5}$	$\sqrt{45 n^{2}}, n \geq 0$ or $-\sqrt{45 n^{2}}, n<0$
$-6 \sqrt[3]{2}$	$\sqrt[3]{-432}$
$\frac{1}{2 a} \sqrt[3]{7 a}$	$\sqrt[3]{\frac{7}{8 a^{2}}}, a \neq 0$
$4 x \sqrt[3]{2 x}$	$\sqrt[3]{128 x^{4}}$

5. a) $15 \sqrt{5}$ and $40 \sqrt{5} \quad$ b) $32 z^{4} \sqrt{7}$ and $48 z^{2} \sqrt{7}$
c) $-35 \sqrt[4]{w^{2}}$ and $9 w^{2}\left(\sqrt[4]{w^{2}}\right)$
d) $6 \sqrt[3]{2}$ and $18 \sqrt[3]{2}$
6. a) $3 \sqrt{6}, 7 \sqrt{2}, 10$
b) $-3 \sqrt{2},-4,-2 \sqrt{\frac{7}{2}},-2 \sqrt{3}$
c) $\sqrt[3]{21}, 2.8,2 \sqrt[3]{5}, 3 \sqrt[3]{2}$
7. Example: Technology could be used.
8. a) $4 \sqrt{5}$
b) $10.4 \sqrt{2}-7$
c) $-4 \sqrt[4]{11}+14$
d) $-\frac{2}{3} \sqrt{6}+2 \sqrt{10}$
9. a) $12 \sqrt{3}$
b) $6 \sqrt{2}+6 \sqrt{7}$
c) $-28 \sqrt{5}+22.5$
d) $\frac{13}{4} \sqrt[3]{3}-7 \sqrt{11}$
10. a) $8 a \sqrt{a}, a \geq 0$
b) $9 \sqrt{2 x}-\sqrt{x}, x \geq 0$
c) $2(r-10) \sqrt[3]{5 r}, r \in \mathrm{R}$
d) $\frac{4 W}{5}-6 \sqrt{2 W}, w \geq 0$
11. $25.2 \sqrt{3} \mathrm{~m} / \mathrm{s}$
12. $12 \sqrt{2} \mathrm{~cm}$
13. $12 \sqrt[3]{3025}$ million kilometres
14. $2 \sqrt{30} \mathrm{~m} / \mathrm{s} \approx 11 \mathrm{~m} / \mathrm{s}$
15. a) $2 \sqrt{38} \mathrm{~m}$
b) $8 \sqrt{19} \mathrm{~m}$
16. $\sqrt{1575} \mathrm{~mm}^{2}, 15 \sqrt{7} \mathrm{~mm}^{2}$
17. $7 \sqrt{5}$ units
18. $14 \sqrt{2} \mathrm{~m}$
19. Brady is correct. The answer can be further simplified to $10 y^{2} \sqrt{y}$.
20. $4 \sqrt{58}$

Example: Simplify each radical to see which is not a like radical to $12 \sqrt{6}$.
21. $\sqrt{2-\sqrt{3}} \mathrm{~m}$

