Practise

1. Write each expression with base 2 .
a) 4^{6}
b) 8^{3}
c) $\left(\frac{1}{8}\right)^{2}$
d) 16
2. Rewrite the expressions in each pair so that they have the same base.
a) 2^{3} and 4^{2}
b) 9^{x} and 27
c) $\left(\frac{1}{2}\right)^{2 x}$ and $\left(\frac{1}{4}\right)^{x-1}$
d) $\left(\frac{1}{8}\right)^{x-2}$ and 16^{x}
3. Write each expression as a single power of 4 .
a) $(\sqrt{16})^{2}$
b) $\sqrt[3]{16}$
c) $\sqrt{16}(\sqrt[3]{64})^{2}$
d) $(\sqrt{2})^{8}(\sqrt[4]{4})^{4}$
4. Solve. Check your answers using substitution.
a) $2^{4 x}=4^{x+3}$
b) $25^{x-1}=5^{3 x}$
c) $3^{w+1}=9^{w-1}$
d) $36^{3 m-1}=6^{2 m+5}$
5. Solve. Check your answers using graphing technology.
a) $4^{3 x}=8^{x-3}$
b) $27^{x}=9^{x-2}$
c) $125^{2 y-1}=25^{y+4}$
d) $16^{2 k-3}=32^{k+3}$
6. Solve for x using systematic trial. Check your answers using graphing technology. Round answers to one decimal place.
a) $2=1.07^{x}$
b) $3=1.1^{x}$
c) $0.5=1.2^{x-1}$
d) $5=1.08^{x+2}$
7. Solve for t graphically. Round answers to two decimal places, if necessary.
a) $100=10(1.04)^{t}$
b) $10=\left(\frac{1}{2}\right)^{2 t}$
c) $12=\left(\frac{1}{4}\right)^{\frac{t}{3}}$
d) $100=25\left(\frac{1}{2}\right)^{\frac{t}{4}}$
e) $2^{t}=3^{t-1}$
f) $5^{t-2}=4^{t}$
g) $8^{t+1}=3^{t-1}$
h) $7^{2 t+1}=4^{t-2}$

Apply

8. If seafood is not kept frozen (below $0^{\circ} \mathrm{C}$), it will spoil due to bacterial growth. The relative rate of spoilage increases with temperature according to the model $R=100(2.7)^{\frac{T}{8}}$, where T is the temperature, in degrees Celsius, and R is the relative spoilage rate.
a) Sketch a graph of the relative spoilage rate R versus the temperature T from $0{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.
b) Use your graph to predict the temperature at which the relative spoilage rate doubles to 200 .
c) What is the relative spoilage rate at $15^{\circ} \mathrm{C}$?
d) If the maximum acceptable relative spoilage rate is 500 , what is the maximum storage temperature?

Did You Know?

The relative rate of spoilage for seafood is defined as the shelf life at $0^{\circ} \mathrm{C}$ divided by the shelf life at temperature T, in degrees Celsius.
9. A bacterial culture starts with 2000 bacteria and doubles every 0.75 h . After how many hours will the bacteria count be 32000 ?
10. Simionie needs $\$ 7000$ to buy a snowmobile, but only has $\$ 6000$. His bank offers a GIC that pays an annual interest rate of 3.93%, compounded annually. How long would Simionie have to invest his money in the GIC to have enough money to buy the snowmobile?

Did You Know?

A Guaranteed Investment Certificate (GIC) is a secure investment that guarantees 100% of the original amount that is invested. The investment earns interest, at either a fixed or a variable rate, based on a predetermined formula.

C1 Example: The graph of an exponential function of the form $y=c^{x}$ has a horizontal asymptote at $y=0$. Since $y \neq 0$, the graph cannot have an x-intercept.
C2 a) Example: For a function of the form $y=a(c)^{b(x-h)}+k$, the parameters a and k can affect the x-intercept. If $a>0$ and $k<0$ or $a<0$ and $k>0$, then the graph of the exponential function will have an x-intercept.
b) Example: For a function of the form $y=a(c)^{b(x-h)}+k$, the parameters a, h, and k can affect the y-intercept. The point $(0, y)$ on the graph of $y=c^{x}$ gets mapped to (h, ay $+k$).

7.3 Solving Exponential Equations, pages 364 to 365

1. a) $2^{12} \quad$ b) 2^{9}
2. a) 2^{3} and 2^{4} c) $\left(\frac{1}{2}\right)^{2 x}$ and $\left(\frac{1}{2}\right)^{2 x-2}$
3. a) 4^{2}
b) $4^{\frac{2}{3}}$
c) 2^{-6}
d) 2^{4}
4. a) $x=3$
b) $x=-2$
c) 4^{3}
d) 4^{3}
5. a) $x=3$
b) $x=-4$

11
d) $m=\frac{7}{4}$
5. a) $x=-3$
b) 11.5
c) -2.8
d) $k=9$
6. a) 10.2
b) -1.66
c) -5.38
d) 18.9
7. a) 58.71 f) 14.43
8. a)

g) -3.24
d) -8 b) approximately $5.6^{\circ} \mathrm{C}$ c) approximately 643 d) approximately $13.0^{\circ} \mathrm{C}$
9. 3 h
10. 4 years
11. a) $A=1000(1.02)^{n}$
b) $\$ 1372.79$
c) 9 years
12. a) $C=\left(\frac{1}{2}\right)^{\frac{t}{5.3}}$
b) $\frac{1}{32}$ of the original amount
c) 47.7 years
13. a) $A=500(1.033)^{n} \quad$ b) $\$ 691.79$
c) approximately 17 years
14. $\$ 5796.65$
15. a) i) $x>2$
ii) $x>-\frac{3}{2}$
b) i)

ii)
 Since the graph of $y=2^{3 x}$ is greater than (above) the graph of $y=4^{x+1}$ when $x>2$, the solution is $x>2$. Since the graph of $y=81^{x}$ is less than (below) the graph of $y=27^{2 x+1}$ when $x>-\frac{3}{2}$, the solution is $x>-\frac{3}{2}$.
c) Example: Solve the inequality $\left(\frac{1}{2}\right)^{x+3}>2^{x-1}$. Answer: $x<-1$
16. Yes. Rewrite the equation as $\left(4^{x}\right)^{2}+2\left(4^{x}\right)-3=0$ and factor as $\left(4^{x}+3\right)\left(4^{x}-1\right)=0 ; x=0$
17. $\left(2^{x}\right)^{x}=\left(2^{\frac{5}{2}}\right)^{\frac{5}{2}} \approx 76.1$
18. 20 years

C1 a) You can express 16^{2} with a base of 4 by writing 16 as 4^{2} and simplifying.
$16^{2}=\left(4^{2}\right)^{2}$
$16^{2}=4^{4}$
b) Example: You can express 16^{2} with a base of 2 by writing 16 as 2^{4} and simplifying.
$16^{2}=\left(2^{4}\right)^{2}$
$16^{2}=2^{8}$
Or, you can express 16^{2} with a base of $\frac{1}{4}$ by writing 16 as $\left(\frac{1}{4}\right)^{-2}$ and simplifying.
$16^{2}=\left(\left(\frac{1}{4}\right)^{-2}\right)^{2}$
$16^{2}=\left(\frac{1}{4}\right)^{-4}$
C2 a)
$\left(2^{4}\right)^{2 x}=\left(2^{3}\right)^{x-3}$
b) Step 1: Express the bases on
$2^{8 x}=2^{3 x-9}$
$8 \mathrm{x}=3 \mathrm{x}-9$ both sides as powers of 2 .
Step 2: Apply the power of a
pow law.

$$
x=-\frac{9}{5}
$$

Step 4: Isolate the term containing x.
Step 5: Solve for x.

Chapter 7 Review, pages 366 to 367

1. a) B
2. a)

B	b) D
\boldsymbol{x}	\boldsymbol{y}
-2	$11 . \overline{\overline{1}}$
-1	$3 . \overline{3}$
0	1
1	0.3
2	0.09

b) domain $\{x \mid x \in R\}$, range $\{y \mid y>0, y \in R\}$, y-intercept 1, function decreasing, horizontal asymptote $y=0$
3. $y=\left(\frac{1}{4}\right)^{x}$
4. a) Since the interest rate is 3.25% per year, each year the investment grows by a factor of 103.25%, which, written as a decimal, is 1.0325 .
b) $\$ 1.38$
c) 21.7 years
5. a) $a=-2$: vertical stretch by a factor of 2 and reflection in the x-axis; $b=3$: horizontal stretch by a factor of $\frac{1}{3}$; $h=1$: horizontal translation of 1 unit right; $k=2$: vertical translation of 2 units up b)

Transformation	Parameter Value	Function Equation
horizontal stretch	$b=3$	$y=4^{3 x}$
vertical stretch	$a=-2$	$y=-2(4)^{x}$
translation left/right	$h=1$	$y=(4)^{x-1}$
translation up/down	$k=2$	$y=4^{x}+2$

