Your Turn

There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, *F*, of flower species that a butterfly feeds on and the number, *B*, of butterflies observed can be modelled by the function $F = -2.641 + 8.958 \log B$.

Predict the number of butterfly observations in a region with 25 flower species.

Arctic butterfly, oeneis chryxus

Did You Know?

Eighty-seven different species of butterfly have been seen in Nunavut. Northern butterflies survive the winters in a larval stage and manufacture their own antifreeze to keep from freezing. They manage the cool summer temperatures by angling their wings to catch the sun's rays.

Key Ideas

- To represent real-life situations, you may need to transform the basic logarithmic function $y = \log_b x$ by applying reflections, stretches, and translations. These transformations should be performed in the same manner as those applied to any other function.
- The effects of the parameters *a*, *b*, *h*, and *k* in $y = a \log_c (b(x h)) + k$ on the graph of the logarithmic function $y = \log_c x$ are shown below.

• Only parameter *h* changes the vertical asymptote and the domain. None of the parameters change the range.

Check Your Understanding

Practise

- Describe how the graph of each logarithmic function can be obtained from the graph of y = log₅ x.
 - a) $y = \log_5 (x 1) + 6$
 - **b)** $y = -4 \log_5 3x$
 - c) $y = \frac{1}{2} \log_5 (-x) + 7$

- **2. a)** Sketch the graph of $y = \log_3 x$, and then apply, in order, each of the following transformations.
 - Stretch vertically by a factor of 2 about the *x*-axis.
 - Translate 3 units to the left.
 - **b)** Write the equation of the final transformed image.

- **3. a)** Sketch the graph of $y = \log_2 x$, and then apply, in order, each of the following transformations.
 - Reflect in the *y*-axis.
 - Translate vertically 5 units up.
 - **b)** Write the equation of the final transformed image.
- 4. Sketch the graph of each function.
 - a) $y = \log_2 (x + 4) 3$
 - **b)** $y = -\log_3(x+1) + 2$
 - c) $y = \log_4 (-2(x-8))$
- **5.** Identify the following characteristics of the graph of each function.
 - i) the equation of the asymptote
 - ii) the domain and range
 - **iii)** the *y*-intercept, to one decimal place if necessary
 - iv) the *x*-intercept, to one decimal place if necessary
 - a) $y = -5 \log_3 (x + 3)$

b)
$$y = \log_6 (4(x + 9))$$

c) $y = \log_5 (x + 3) - 2$

d)
$$y = -3 \log_2 (x + 1) - 6$$

6. In each, the red graph is a stretch of the blue graph. Write the equation of each red graph.

7. Describe, in order, a series of transformations that could be applied to the graph of $y = \log_7 x$ to obtain the graph of each function.

a)
$$y = \log_7 (4(x+5)) + 6$$

b)
$$y = 2 \log_7 \left(-\frac{1}{3}(x-1) \right) - 4$$

Apply

- **8.** The graph of $y = \log_3 x$ has been transformed to $y = a \log_3 (b(x h)) + k$. Find the values of *a*, *b*, *h*, and *k* for each set of transformations. Write the equation of the transformed function.
 - a) a reflection in the x-axis and a translation of 6 units left and 3 units up
 - **b)** a vertical stretch by a factor of 5 about the *x*-axis and a horizontal stretch about the *y*-axis by a factor of $\frac{1}{3}$
 - c) a vertical stretch about the x-axis by a factor of $\frac{3}{4}$, a horizontal stretch about the y-axis by a factor of 4, a reflection in the y-axis, and a translation of 2 units right and 5 units down
- **9.** Describe how the graph of each logarithmic function could be obtained from the graph of $y = \log_3 x$.

a)
$$y = 5 \log_3 (-4x + 12) - 2$$

b)
$$y = -\frac{1}{4} \log_3 (6 - x) + 1$$

- **10. a)** Only a vertical translation has been applied to the graph of $y = \log_3 x$ so that the graph of the transformed image passes through the point (9, -4). Determine the equation of the transformed image.
 - **b)** Only a horizontal stretch has been applied to the graph of $y = \log_2 x$ so that the graph of the transformed image passes through the point (8, 1). Determine the equation of the transformed image.

8.2 Transformations of Logarithmic Functions, pages 389 to 391

- **1.** a) Translate 1 unit right and 6 units up.
 - **b)** Reflect in the *x*-axis, stretch vertically about the *x*-axis by a factor of 4, and stretch horizontally about the *y*-axis by a factor of $\frac{1}{3}$.
 - c) Reflect in the *y*-axis, stretch vertically about the *x*-axis by a factor of $\frac{1}{2}$, and translate 7 units up.

6. a) $y = 5 \log x$ **b)** $y = \log_8 2x$ 1 1 c)

$$y = \frac{1}{3} \log_2 x$$
 d) $y = \log_4 \left(\frac{x}{2}\right)$

- 7. a) stretch horizontally about the *y*-axis by a factor of $\frac{1}{4}$; translate 5 units left and 6 units up
 - **b)** stretch horizontally about the *y*-axis by a factor of 3; stretch vertically about the x-axis by a factor of 2; reflect in the y-axis; translate 1 unit right and 4 units down
- **8.** a) $a = -1, b = 1, h = -6, k = 3; y = -\log_3(x + 6) + 3$
 - **b)** $a = 5, b = 3, h = 0, k = 0; y = 5 \log_3 3x$ c) a = 0.75, b = -0.25, h = 2, k = -5;
 - $y = \frac{3}{4} \log_3 \left(-\frac{1}{4}(x-2) \right) 5$
- 9. a) Reflect in the y-axis, stretch vertically about the x-axis by a factor of 5, stretch horizontally about the *y*-axis by a factor of $\frac{1}{4}$, and translate 3 units right and 2 units down.
 - b) Reflect in the x-axis, reflect in the y-axis, stretch vertically about the x-axis by a factor of $\frac{1}{4}$, translate 6 units right and 1 unit up.

10. a)
$$y = \log_3 x - 6$$
 b) $y = \log_2 \left(\frac{x}{4}\right)$

- 11. Stretch vertically about the x-axis by a factor of 3 and translate 4 units right and 2 units down.
- 12. a) Stretch vertically about the x-axis by a factor of 0.67, stretch horizontally about the y-axis by a factor of $\frac{25}{9}$ or approximately 2.78, and translate 1.46 units up.
 - b) 515 649 043 kWh
- **13. a)** 0.8 μL **b)** 78 mmHg
- **14. a)** 172 cm **b)** 40 kg
- **15.** $a = \frac{1}{3}$
- **16.** a) $y = -2 \log_5 x + 13$ b) $y = \log 2x$ **17.** $a = \frac{1}{2}, k = -8$

C1
$$a = \frac{1}{4}, b = \frac{1}{3}, h = 4, k = -1;$$

 $g(x) = 0.25 \log_5 \left(\frac{1}{3}\right)(x - 4) - 1$

C2 a) $y = -\log_2 x, y = \log_2 (-x), y = 2^x$ b) Reflect in the x-axis, reflect in the y-axis, and reflect in the line y = x.

8.3 Laws of Logarithms, pages 400 to 403

1. a) $\log_7 x + 3 \log_7 y + \frac{1}{2} \log_7 z$ **b)** $8(\log_5 x + \log_5 y + \log_5 z)$ **c)** $2 \log x - \log y - \frac{1}{2} \log z$

c)
$$2 \log x - \log y - \frac{1}{3} \log x$$

d)
$$y = \log_3 x + (\frac{1}{2})(\log_3 y - \log_3 z)$$

2. a) 2 b) 3 c) 3.5 d) 3

3. a)
$$\log_9\left(\frac{xz^4}{y}\right)$$
 b) $y = \log_3\frac{\sqrt{x}}{y^2}$
c) $\log_6\left(\frac{x}{\sqrt[5]{y^2}}\right)$ **d)** $\log\sqrt[3]{xy}$

4. a)
$$1.728$$
 b) 1.44 c)

6. a) Stretch horizontally about the y-axis by a factor of $\frac{1}{8}$.

1.2

- **b)** Translate 3 units up.
- 7. a) False; the division must take place inside the logarithm.
 - False; it must be a multiplication inside the b) logarithm.
 - C) True
 - False; the power must be inside the logarithm. d) e) True

8. a)
$$P - Q$$
 b) $P + Q$ c) $P + \frac{Q}{2}$ d) $2Q - 2P$
9. a) $6K$ b) $1 + K$ c) $2K + 2$ d) $\frac{K}{5} - 3$
10. a) $\frac{1}{2} \log_5 x, x > 0$ b) $\frac{2}{3} \log_{11} x, x > 0$
11. a) $\log_2 \left(\frac{x+5}{3}\right), x < -5 \text{ or } x > 5$
b) $\log_7 \left(\frac{x+4}{x+2}\right), x < -4 \text{ or } x > 4$
c) $\log_8 \left(\frac{x+3}{x-2}\right), x > 2$
12. a) Left Side = $\log_c 48 - (\log_c 3 + \log_c 2)$
 $= \log_c 48 - \log_c 6$
 $= \log_c 8$
 $= \operatorname{Right} \operatorname{Side}$
b) Left Side = $7 \log_c 4$
 $= 7 \log_c 2^2$
 $= 14 \log_c 2$
 $= \operatorname{Right} \operatorname{Side}$
c) Left Side = $\frac{1}{2}(\log 2 + \log 6)$

$$\frac{2}{2} (\log_c 2 + \log_c 3) + \log_c 2$$

$$=\frac{1}{2}(\log_c 2 + \log_c 3 + \log_c 2)$$

$$= \frac{-1}{2}(2 \log_{c} 2) + \frac{-1}{2}\log_{c} 3$$

 $= \log_{2} 2 + \log_{2} \sqrt{3}$

$$= \log_c 2 + \log_c 2$$

$$= \text{Kight Side}$$

d) Left Side =
$$\log_c (5c)$$

= 2 log 5c

$$= 2 (\log 5 + \log c)$$

$$= 2 (\log_{c} 5 + 1)$$

- **13. a)** 70 dB b) approximately 1995 times as loud c) approximately 98 dB
- 14. Decibels must be changed to intensity to gauge loudness. The function that maps the change is not linear.
- **15.** 3.2 V
- **16. a)** 10⁻⁷ mol/L **b)** 12.6 times as acidic c) 3.4 **17.** 0.18 km/s
- **18.** a) The graphs are the same for x > 0. However, the graph of $y = \log x^2$ has a second branch for x < 0, which is the reflection in the y-axis of the branch for x > 0.
 - The domains are different. The function $y = \log x^2$ b) is defined for all values of *x* except 0, while the function $y = 2 \log x$ is defined only for x > 0.
 - c) x > 0