## Your Turn

Did You Know?
Eighty-seven different species of butterfly have been seen in Nunavut. Northern butterflies survive the winters in a larval stage and manufacture their own antifreeze to keep from freezing. They manage the cool summer temperatures by angling their wings
Arctic butterfly, oeneis chryxus to catch the sun's rays.

## Key Ideas

- To represent real-life situations, you may need to transform the basic logarithmic function $y=\log _{b} x$ by applying reflections, stretches, and translations. These transformations should be performed in the same manner as those applied to any other function.
- The effects of the parameters $a, b, h$, and $k$ in $y=a \log _{c}(b(x-h))+k$ on the graph of the logarithmic function $y=\log _{c} x$ are shown below.

- Only parameter $h$ changes the vertical asymptote and the domain. None of the parameters change the range.


## Check Your Understanding

## Practise

1. Describe how the graph of each logarithmic function can be obtained from the graph of $y=\log _{5} x$.
a) $y=\log _{5}(x-1)+6$
b) $y=-4 \log _{5} 3 x$
c) $y=\frac{1}{2} \log _{5}(-x)+7$
2. a) Sketch the graph of $y=\log _{3} x$, and then apply, in order, each of the following transformations.

- Stretch vertically by a factor of 2 about the $x$-axis.
- Translate 3 units to the left.
b) Write the equation of the final transformed image.

3. a) Sketch the graph of $y=\log _{2} x$, and then apply, in order, each of the following transformations.

- Reflect in the $y$-axis.
- Translate vertically 5 units up.
b) Write the equation of the final transformed image.

4. Sketch the graph of each function.
a) $y=\log _{2}(x+4)-3$
b) $y=-\log _{3}(x+1)+2$
c) $y=\log _{4}(-2(x-8))$
5. Identify the following characteristics of the graph of each function.
i) the equation of the asymptote
ii) the domain and range
iii) the $y$-intercept, to one decimal place if necessary
iv) the $x$-intercept, to one decimal place if necessary
a) $y=-5 \log _{3}(x+3)$
b) $y=\log _{6}(4(x+9))$
c) $y=\log _{5}(x+3)-2$
d) $y=-3 \log _{2}(x+1)-6$
6. In each, the red graph is a stretch of the blue graph. Write the equation of each red graph.
a)

b)

c)

d)

7. Describe, in order, a series of transformations that could be applied to the graph of $y=\log _{7} x$ to obtain the graph of each function.
a) $y=\log _{7}(4(x+5))+6$
b) $y=2 \log _{7}\left(-\frac{1}{3}(x-1)\right)-4$

## Apply

8. The graph of $y=\log _{3} x$ has been transformed to $y=a \log _{3}(b(x-h))+k$. Find the values of $a, b, h$, and $k$ for each set of transformations. Write the equation of the transformed function.
a) a reflection in the $x$-axis and a translation of 6 units left and 3 units up
b) a vertical stretch by a factor of 5 about the $x$-axis and a horizontal stretch about the $y$-axis by a factor of $\frac{1}{3}$
c) a vertical stretch about the $x$-axis by a factor of $\frac{3}{4}$, a horizontal stretch about the $y$-axis by a factor of 4 , a reflection in the $y$-axis, and a translation of 2 units right and 5 units down
9. Describe how the graph of each logarithmic function could be obtained from the graph of $y=\log _{3} x$.
a) $y=5 \log _{3}(-4 x+12)-2$
b) $y=-\frac{1}{4} \log _{3}(6-x)+1$
10. a) Only a vertical translation has been applied to the graph of $y=\log _{3} x$ so that the graph of the transformed image passes through the point $(9,-4)$. Determine the equation of the transformed image.
b) Only a horizontal stretch has been applied to the graph of $y=\log _{2} x$ so that the graph of the transformed image passes through the point $(8,1)$. Determine the equation of the transformed image.
11. a) $y=\log _{5} x$
b)

domain $\{x \mid x>0, x \in R\}$,
range $\{y \mid y \in R\}$,
$x$-intercept 1 ,
no $y$-intercept,
vertical asymptote $x=0$
12. a) $g^{-1}(x)=\left(\frac{1}{4}\right)^{x}$
b)

domain $\{x \mid x \in R\}$,
range $\{y \mid y>0, y \in R\}$,
no $x$-intercept,
$y$-intercept 1,
horizontal asymptote $y=0$
13. They are reflections of each other in the line $y=x$.
14. a) They have the exact same shape.
b) One of them is increasing and the other is decreasing.
$\begin{array}{lllll}\text { 12. a) } 216 & \text { b) } 81 & \text { c) } 64 & \text { d) } 8\end{array}$
15. a) 7
b) 6
16. a) 0
b) 1
17. -1
18. 16
19. a) $t=\log _{1.1} N$
b) 145 days
20. The larger asteroid had a relative risk that was 1479 times as dangerous.
21. 1000 times as great
22. 5
23. $m=14, n=13$
24. $4 n$
25. $y=3^{2^{x}}$
26. $n=8 ; m=3$

C1


The function has the same general shape, but instead of decreasing, after $x=1$ the function increases without limit.

C2 Answers will vary.
C3 Step 1: a) $e=2.718281828$ b) $10^{10}$
Step 2: a) domain $\{x \mid x>0, x \in R\}$, range $\{y \mid y \in R\}$, $x$-intercept 1, no $y$-intercept, vertical asymptote $x=0$
b) $y=\ln x$

Step 3: a) $r=2.41$
b) i) $\theta=\frac{\ln r}{0.14}$
ii) $\theta=17.75$

### 8.2 Transformations of Logarithmic Functions, pages 389 to 391

1. a) Translate 1 unit right and 6 units up.
b) Reflect in the $x$-axis, stretch vertically about the $x$-axis by a factor of 4 , and stretch horizontally about the $y$-axis by a factor of $\frac{1}{3}$.
c) Reflect in the $y$-axis, stretch vertically about the $x$-axis by a factor of $\frac{1}{2}$, and translate 7 units up.
2. a)

b)
. a)

b) $y=\log _{2}(-x)+5$
3. a)

b)

c)

4. a) i) vertical asymptote $x=-3$
ii) domain $\{x \mid x>-3, x \in R\}$, range $\{y \mid y \in R\}$
iii) $y$-intercept -5 iv) $x$-intercept -2
b)
i) vertical asymptote $x=-9$
ii) domain $\{x \mid x>-9, x \in R\}$, range $\{y \mid y \in R\}$
iii) $y$-intercept $2 \quad$ iv) $x$-intercept -8.75
c) i) vertical asymptote $x=-3$
ii) domain $\{x \mid x>-3, x \in R\}$, range $\{y \mid y \in R\}$
iii) $y$-intercept -1.3 iv) $x$-intercept 22
d) i) vertical asymptote $x=-1$
ii) domain $\{x \mid x>-1, x \in R\}$, range $\{y \mid y \in R\}$
iii) $y$-intercept $-6 \quad$ iv) $x$-intercept $-\frac{3}{4}$
5. a) $y=5 \log x$
b) $y=\log _{8} 2 x$
c) $y=\frac{1}{3} \log _{2} x$
d) $y=\log _{4}\left(\frac{x}{2}\right)$
6. a) stretch horizontally about the $y$-axis by a factor of $\frac{1}{4}$; translate 5 units left and 6 units up
b) stretch horizontally about the $y$-axis by a factor of 3 ; stretch vertically about the $x$-axis by a factor of 2 ; reflect in the $y$-axis; translate 1 unit right and 4 units down
7. a) $a=-1, b=1, h=-6, k=3 ; y=-\log _{3}(x+6)+3$
b) $a=5, b=3, h=0, k=0$; $y=5 \log _{3} 3 x$
c) $a=0.75, b=-0.25, h=2, k=-5$; $y=\frac{3}{4} \log _{3}\left(-\frac{1}{4}(x-2)\right)-5$
8. a) Reflect in the $y$-axis, stretch vertically about the $x$-axis by a factor of 5 , stretch horizontally about the $y$-axis by a factor of $\frac{1}{4}$, and translate 3 units right and 2 units down.
b) Reflect in the $x$-axis, reflect in the $y$-axis, stretch vertically about the $x$-axis by a factor of $\frac{1}{4}$, translate 6 units right and 1 unit up.
9. a) $y=\log _{3} x-6$
b) $y=\log _{2}\left(\frac{x}{4}\right)$
10. Stretch vertically about the $x$-axis by a factor of 3 and translate 4 units right and 2 units down.
11. a) Stretch vertically about the $x$-axis by a factor of 0.67 , stretch horizontally about the $y$-axis by a factor of $\frac{25}{9}$ or approximately 2.78 , and translate 1.46 units up.
b) 515649043 kWh
12. a) $0.8 \mu \mathrm{~L}$
b) 78 mmHg
13. a) 172 cm
b) 40 kg
14. $a=\frac{1}{3}$
15. a) $y=-2 \log _{5} x+13$
b) $y=\log 2 x$
16. $a=\frac{1}{2}, k=-8$

C1 $a=\frac{1}{4}, b=\frac{1}{3}, h=4, k=-1$;
$g(x)=0.25 \log _{5}\left(\frac{1}{3}\right)(x-4)-1$
C2 a) $y=-\log _{2} x, y=\log _{2}(-x), y=2^{x}$
b) Reflect in the $x$-axis, reflect in the $y$-axis, and reflect in the line $y=x$.


C3 a) $y=\frac{1}{2} \log _{7} \frac{(x-5)}{3}+\frac{1}{2}$
b) $y=3^{\frac{x-8}{2}}+1$

C4 Answers will vary.

### 8.3 Laws of Logarithms, pages 400 to 403

1. a) $\log _{7} x+3 \log _{7} y+\frac{1}{2} \log _{7} z$
b) $8\left(\log _{5} x+\log _{5} y+\log _{5} z\right)$
c) $2 \log x-\log y-\frac{1}{3} \log z$
d) $y=\log _{3} x+\left(\frac{1}{2}\right)\left(\log _{3} y-\log _{3} z\right)$
2. a) 2
b) 3
c) 3.5
d) 3
3. a) $\log _{9}\left(\frac{x z^{4}}{y}\right)$
b) $y=\log _{3} \frac{\sqrt{x}}{y^{2}}$
c) $\quad \log _{6}\left(\frac{x}{\sqrt[5]{\mathrm{xy}^{2}}}\right)$
d) $\log \sqrt[3]{x y}$
4. a) 1.728
b) 1.44
5. a) 27
b) 49
6. a) Stretch horizontally about the $y$-axis by a factor of $\frac{1}{8}$.
b) Translate 3 units up.
7. a) False; the division must take place inside the logarithm.
b) False; it must be a multiplication inside the logarithm.
c) True
d) False; the power must be inside the logarithm.
e) True
$\begin{array}{lll}\text { 8. a) } P-Q & \text { b) } P+Q & \text { c) } P+\frac{Q}{2}\end{array} \quad$ d) $2 Q-2 P$
8. a) $6 K$
b) $1+K$
c) $2 K+2$
d) $\frac{K}{5}-3$
9. a) $\frac{1}{2} \log _{5} x, x>0$
b) $\frac{2}{3} \log _{11} x, x>0$
10. a) $\log _{2}\left(\frac{x+5}{3}\right), x<-5$ or $x>5$
b) $\log _{7}\left(\frac{x+4}{x+2}\right), x<-4$ or $x>4$
c) $\log _{8}\left(\frac{x+3}{x-2}\right), x>2$
11. a) Left Side $=\log _{c} 48-\left(\log _{c} 3+\log _{c} 2\right)$

$$
\begin{aligned}
& =\log _{c} 48-\log _{c} 6 \\
& =\log _{c} 8 \\
& =\text { Right Side }
\end{aligned}
$$

b) Left Side $=7 \log _{c} 4$

$$
\begin{aligned}
& =7 \log _{c} 2^{2} \\
& =2(7) \log _{c} 2 \\
& =14 \log _{c} 2
\end{aligned}
$$

$$
=\text { Right Side }
$$

c) $\quad$ Left Side $=\frac{1}{2}\left(\log _{c} 2+\log _{c} 6\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\log _{c} 2+\log _{c} 3+\log _{c} 2\right) \\
& =\frac{1}{2}\left(2 \log _{c} 2\right)+\frac{1}{2} \log _{c} 3 \\
& =\log _{c} 2+\log _{c} \sqrt{3} \\
& =\text { Right Side }
\end{aligned}
$$

d) Left Side $=\log _{c}(5 c)^{2}$

$$
\begin{aligned}
& =2 \log _{c} 5 c \\
& =2\left(\log _{c} 5+\log _{c} c\right) \\
& =2\left(\log _{c} 5+1\right) \\
& =\text { Right Side }
\end{aligned}
$$

13. a) $70 \mathrm{~dB} \quad$ b) approximately 1995 times as loud
c) approximately 98 dB
14. Decibels must be changed to intensity to gauge loudness. The function that maps the change is not linear.
15. 3.2 V
16. a) $10^{-7} \mathrm{~mol} / \mathrm{L} \quad$ b) 12.6 times as acidic c) 3.4
17. $0.18 \mathrm{~km} / \mathrm{s}$
18. a) The graphs are the same for $x>0$. However, the graph of $y=\log x^{2}$ has a second branch for $x<0$, which is the reflection in the $y$-axis of the branch for $x>0$.
b) The domains are different. The function $y=\log x^{2}$ is defined for all values of $x$ except 0 , while the function $y=2 \log x$ is defined only for $x>0$.
c) $x>0$
