# **Key Ideas**

- To solve a trigonometric equation algebraically, you can use the same techniques as used in solving linear and quadratic equations.
- When you arrive at  $\sin \theta = a$  or  $\cos \theta = a$  or  $\tan \theta = a$ , where  $a \in \mathbb{R}$ , then use the unit circle for exact values of  $\theta$  and inverse trigonometric function keys on a calculator for approximate measures. Use reference angles to find solutions in other quadrants.
- To solve a trigonometric equation involving  $\csc \theta$ ,  $\sec \theta$ , or  $\cot \theta$ , you may need to work with the related reciprocal value(s).
- To determine a general solution or if the domain is real numbers, find the solutions in one positive rotation  $(2\pi \text{ or } 360^\circ)$ . Then, use the concept of coterminal angles to write an expression that identifies all possible measures.

# **Check Your Understanding**

## Practise

- 1. Without solving, determine the number of solutions for each trigonometric equation in the specified domain. Explain your reasoning.
  - a)  $\sin \theta = \frac{\sqrt{3}}{2}, \ 0 \le \theta < 2\pi$

**b)** 
$$\cos \theta = \frac{1}{\sqrt{2}}, -2\pi \le \theta < 2\pi$$

c)  $\tan \theta = -1, -360^{\circ} \le \theta \le 180^{\circ}$ 

**d)** sec 
$$\theta = \frac{2\sqrt{3}}{3}, -180^{\circ} \le \theta < 180^{\circ}$$

- **2.** The equation  $\cos \theta = \frac{1}{2}, 0 \le \theta < 2\pi$ , has solutions  $\frac{\pi}{3}$  and  $\frac{5\pi}{3}$ . Suppose the domain is not restricted.
  - a) What is the general solution corresponding to  $\theta = \frac{\pi}{2}$ ?
  - **b)** What is the general solution

corresponding to  $\theta = \frac{5\pi}{3}$ ?

- **3.** Determine the exact roots for each trigonometric equation or statement in the specified domain.
  - a)  $2 \cos \theta \sqrt{3} = 0, \ 0 \le \theta < 2\pi$
  - **b)** csc  $\theta$  is undefined,  $0^{\circ} \leq \theta < 360^{\circ}$

c) 
$$5 - \tan^2 \theta = 4, -180^\circ \le \theta \le 360^\circ$$

**d)** sec 
$$\theta + \sqrt{2} = 0, -\pi \le \theta \le \frac{3\pi}{2}$$

- **4.** Solve each equation for  $0 \le \theta < 2\pi$ . Give solutions to the nearest hundredth of a radian.
  - a)  $\tan \theta = 4.36$
  - **b)**  $\cos \theta = -0.19$
  - c)  $\sin \theta = 0.91$
  - **d)**  $\cot \theta = 12.3$
  - **e)** sec  $\theta = 2.77$
  - **f)**  $\csc \theta = -1.57$
- **5.** Solve each equation in the specified domain.
  - a)  $3\cos\theta 1 = 4\cos\theta$ ,  $0 \le \theta < 2\pi$
  - **b)**  $\sqrt{3} \tan \theta + 1 = 0, -\pi \le \theta \le 2\pi$
  - c)  $\sqrt{2} \sin x 1 = 0, -360^{\circ} < x \le 360^{\circ}$
  - **d)**  $3 \sin x 5 = 5 \sin x 4$ ,  $-360^{\circ} \le x < 180^{\circ}$
  - e)  $3 \cot x + 1 = 2 + 4 \cot x$ ,  $-180^{\circ} < x < 360^{\circ}$
  - **f)**  $\sqrt{3} \sec \theta + 2 = 0, -\pi \le \theta \le 3\pi$

**6.** Copy and complete the table to express each domain or interval using the other notation.

|    | Domain                                         | Interval Notation                     |
|----|------------------------------------------------|---------------------------------------|
| a) | $-2\pi \le \theta \le 2\pi$                    |                                       |
| b) | $-\frac{\pi}{3} \le \theta \le \frac{7\pi}{3}$ |                                       |
| c) | $0^\circ \le \theta \le 270^\circ$             |                                       |
| d) |                                                | $\theta \in [0, \pi)$                 |
| e) |                                                | $\theta \in (0^{\circ}, 450^{\circ})$ |
| f) |                                                | $\theta \in (-2\pi, 4\pi]$            |

- 7. Solve for θ in the specified domain. Give solutions as exact values where possible. Otherwise, give approximate measures to the nearest thousandth.
  - a)  $2\cos^2\theta 3\cos\theta + 1 = 0, 0 \le \theta < 2\pi$
  - **b)**  $\tan^2 \theta \tan \theta 2 = 0, 0^{\circ} \le \theta < 360^{\circ}$
  - c)  $\sin^2 \theta \sin \theta = 0, \theta \in [0, 2\pi)$
  - **d)**  $\sec^2 \theta 2 \sec \theta 3 = 0,$  $\theta \in [-180^\circ, 180^\circ)$
- **8.** Todd believes that  $180^{\circ}$  and  $270^{\circ}$  are solutions to the equation  $5 \cos^2 \theta = -4 \cos \theta$ . Show how you would check to determine whether Todd's solutions are correct.

# Apply

**9.** Aslan and Shelley are finding the solution for  $2 \sin^2 \theta = \sin \theta$ ,  $0 < \theta \le \pi$ . Here is their work.

$$\begin{aligned} &2\sin^2 \theta = \sin \theta \\ &\frac{2\sin^2 \theta}{\sin \theta} = \frac{\sin \theta}{\sin \theta} & \text{Step 1} \\ &2\sin \theta = 1 & \text{Step 2} \\ &\sin \theta = \frac{1}{2} & \text{Step 3} \\ &\theta = \frac{\pi}{6}, \frac{5\pi}{6} & \text{Step 4} \end{aligned}$$

- a) Identify the error that Aslan and Shelley made and explain why their solution is incorrect.
- **b)** Show a correct method to determine the solution for  $2 \sin^2 \theta = \sin \theta$ ,  $0 < \theta \le \pi$ .

- **10.** Explain why the equation  $\sin \theta = 0$  has no solution in the interval  $(\pi, 2\pi)$ .
- **11.** What is the solution for  $\sin \theta = 2$ ? Show how you know. Does the interval matter?
- 12. Jaycee says that the trigonometric equation  $\cos \theta = \frac{1}{2}$  has an infinite number of solutions. Do you agree? Explain.
- **13.** a) Helene is asked to solve the equation  $3 \sin^2 \theta 2 \sin \theta = 0, 0 \le \theta \le \pi$ . She finds that  $\theta = \pi$ . Show how she could check whether this is a correct root for the equation.
  - **b)** Find all the roots of the equation  $3 \sin^2 \theta 2 \sin \theta = 0, \theta \in [0, \pi].$
- 14. Refer to the Did You Know? below. Use Snell's law of refraction to determine the angle of refraction of a ray of light passing from air into water if the angle of incidence is 35°. The refractive index is 1.000 29 for air and 1.33 for water.

### Did You Know?





In  $\triangle OCD$ ,  $\angle ODC = \theta$  (alternate angles). Then, sin  $\theta = \frac{OC}{OD} = \frac{1}{OD}$ . So,  $\csc \theta = \frac{1}{\sin \theta} = OD$ . Similarly,  $\cot \theta = CD$ .

- **C1 a)** Paula is correct. Examples:  $\sin 0^{\circ} = 0$ ,  $\sin 10^{\circ} \approx 0.1736$ ,  $\sin 25^{\circ} \approx 0.4226$ ,  $\sin 30^\circ = 0.5$ ,  $\sin 45^\circ \approx 0.7071$ ,  $\sin 60^{\circ} \approx 0.8660$ ,  $\sin 90^{\circ} = 1$ .
  - **b)** In quadrant II, sine decreases from  $\sin 90^\circ = 1$  to  $\sin 180^\circ = 0$ . This happens because the *y*-value of points on the unit circle are decreasing toward the horizontal axis as the value of the angle moves from 90° to 180°.
  - Yes, the sine ratio increases in quadrant IV, from c) its minimum value of -1 at 270° up to 0 at 0°.
- **C2** When you draw its diagonals, the hexagon is composed of six equilateral triangles. On the diagram shown, each vertex will be 60° from the previous one. So, the coordinates, going in a positive direction from

(1, 0) are 
$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
,  $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ ,  $(-1, 0)$ ,  $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$   
and  $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ .

**C3 a)**  $slope_{OP} = \frac{\sin \theta}{\cos \theta} \text{ or } \tan \theta$ 

**b)** Yes, this formula applies in each quadrant. In quadrant II, sin  $\theta$  is negative, which makes the slope negative, as expected. Similar reasoning applies in the other quadrants.

c) 
$$y = \left(\frac{\sin \theta}{\cos \theta}\right) x$$
 or  $y = (\tan \theta) x$ 

d) Any line whose slope is defined can be translated vertically by adding the value of the y-intercept b. The equation will be  $y = \left(\frac{\sin \theta}{\cos \theta}\right)x + b$  or  $y = (\tan \theta)x + b$ .

b)  $\frac{3}{5}$  c)  $\frac{5}{4}$  d)  $-\frac{4}{5}$ C4 a)  $\frac{4}{5}$ 

#### 4.4 Introduction to Trigonometric Equations, pages 211 to 214

- **1.** a) two solutions; sin  $\theta$  is positive in quadrants I and II **b)** four solutions;  $\cos \theta$  is positive in quadrants I and IV, giving two solutions for each of the two complete rotations
  - three solutions; tan  $\theta$  is negative in quadrants C) II and IV, and the angle rotates through these quadrants three times from  $-360^{\circ}$  to  $180^{\circ}$
  - two solutions; sec  $\theta$  is positive in quadrants I and d) IV and the angle is in each quadrant once from  $-180^{\circ}$  to  $180^{\circ}$

- **2.** a)  $\theta = \frac{\pi}{3} + 2\pi n, n \in I$  b)  $\theta = \frac{5\pi}{3} + 2\pi n, n \in I$ **3. a)**  $\theta = \frac{\pi}{6}, \frac{11\pi}{6}$ **b)**  $\theta = 0^{\circ}, 180^{\circ}$ c)  $\theta = -135^{\circ}, -45^{\circ}, 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ d)  $\theta = -\frac{3\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$ 4. a)  $\theta = 1.35, 4.49$ **b)**  $\theta = 1.76, 4.52$ c)  $\theta = 1.14, 2.00$ **d)**  $\theta = 0.08, 3.22$ f) 3.83 and 5.59 b)  $\theta = -\frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6}$ e) 1.20 and 5.08 5. a)  $\theta = \pi$ c)  $x = -315^{\circ}, -225^{\circ}, 45^{\circ}, 135^{\circ}$ **d)**  $x = -150^{\circ}, -30^{\circ}$ e)  $x = -45^{\circ}, 135^{\circ}, 315^{\circ}$ f)  $\theta = -\frac{5\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{17\pi}{6}$  $\begin{array}{lll} \textbf{6. a)} & \theta \in [-2\pi, 2\pi] & \textbf{b)} & \theta \in \left[-\frac{\pi}{3}, \frac{7\pi}{3}\right] \\ \textbf{c)} & \theta \in [0^\circ, 270^\circ] & \textbf{d)} & 0 \leq \theta < \pi \\ \textbf{e)} & 0^\circ < \theta < 450^\circ & \textbf{f)} & -2\pi < \theta \leq 4\pi \\ \end{array}$ 7. a)  $\theta = 0, \frac{\pi}{3}, \frac{5\pi}{3}$ b)  $\theta = 63.435^{\circ}, 243.435^{\circ}, 135^{\circ}, 315^{\circ}$ c)  $\theta = 0, \frac{\pi}{2}, \pi$ **d)**  $\theta = -180^{\circ}, -70.529^{\circ}, 70.529^{\circ}$ **8.** Check for  $\theta = 180^{\circ}$ . Left Side =  $5(\cos 180^{\circ})^2 = 5(-1)^2 = 5$ Right Side =  $-4 \cos 180^\circ = -4(-1) = 4$ Since Left Side  $\neq$  Right Side,  $\theta = 180^{\circ}$  is not a solution. Check for  $\theta = 270^{\circ}$ . Left Side =  $5(\cos 270^{\circ})^2 = 5(0)^2 = 0$ Right Side =  $-4 \cos 270^\circ = -4(0) = 0$ Since Left Side = Right Side,  $\theta = 270^{\circ}$  is a solution.
  - 9. a) They should not have divided both sides of the equation by  $\sin \theta$ . This will eliminate one of the possible solutions.
    - b)  $2\sin^2\theta = \sin\theta$  $2\sin^2\theta - \sin\theta = 0$  $\sin \theta (2 \sin \theta - 1) = 0$  $\sin \theta = 0$  and  $2 \sin \theta - 1 = 0$  $\sin \theta = \frac{1}{2}$  $\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \pi$
- **10.** Sin  $\theta = 0$  when  $\theta = 0$ ,  $\pi$ , and  $2\pi$  but none of these values are in the interval  $(\pi, 2\pi)$ .
- **11.** Sin  $\theta$  is only defined for the values  $-1 \leq \sin \theta \leq 1$ ,
- and 2 is outside this range, so  $\sin \theta = 2$  has no solution. **12.** Yes, the general solutions are  $\theta = \frac{\pi}{3} + 2\pi n$ ,  $n \in I$ and  $\theta = \frac{5\pi}{3} + 2\pi n$ ,  $n \in I$ . Since there are an infinite number of integers, there will be an infinite number of solutions coterminal with  $\frac{\pi}{3}$  and  $\frac{5\pi}{3}$ .
- **13.** a) Helene can check her work by substituting  $\pi$  for  $\theta$ in the original equation.

Side = 
$$3(\sin \pi)^2 - 2 \sin \pi$$
  
=  $3(0)^2 - 2(0)$ 

$$= 0(0) 2$$

**b)** 
$$\theta = 0, 0.7297, 2.4119, \pi$$

**14.** 25.56°

Left

- 15. a) June b) December
  - Yes. Greatest sales of air conditioners be expected C) to happen before the hottest months (June) and the least sales before the coldest months (December).