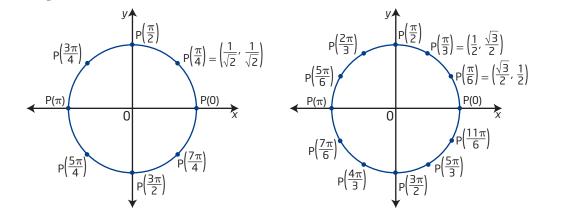
Key Ideas

- The equation for the unit circle is x² + y² = 1. It can be used to determine whether a point is on the unit circle or to determine the value of one coordinate given the other. The equation for a circle with centre at (0, 0) and radius r is x² + y² = r².
- On the unit circle, the measure in radians of the central angle and the arc subtended by that central angle are numerically equivalent.
- Some of the points on the unit circle correspond to exact values of the special angles learned previously.
- You can use patterns to determine coordinates of points. For example, the numerical value of the coordinates of points on the unit circle change to their opposite sign every $\frac{1}{2}$ rotation.

If $P(\theta) = (a, b)$ is in quadrant I, then both *a* and *b* are positive. $P(\theta + \pi)$ is in quadrant III. Its coordinates are (-a, -b), where a > 0 and b > 0.



Check Your Understanding

Practise

- **1.** Determine the equation of a circle with centre at the origin and radius
 - **a)** 4 units
 - **b)** 3 units
 - **c)** 12 units
 - **d)** 2.6 units

2. Is each point on the unit circle? How do you know?

a)
$$\left(-\frac{3}{4}, \frac{1}{4}\right)$$

b) $\left(\frac{\sqrt{5}}{8}, \frac{7}{8}\right)$
c) $\left(-\frac{5}{13}, \frac{12}{13}\right)$
d) $\left(\frac{4}{5}, -\frac{3}{5}\right)$

e)
$$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$
 f) $\left(\frac{\sqrt{7}}{4}, \frac{3}{4}\right)$

- **3.** Determine the missing coordinate(s) for all points on the unit circle satisfying the given conditions. Draw a diagram to support your answer.
 - a) $\left(\frac{1}{4}, y\right)$ in quadrant I b) $\left(x, \frac{2}{3}\right)$ in quadrant II c) $\left(-\frac{7}{8}, y\right)$ in quadrant III d) $\left(x, -\frac{5}{7}\right)$ in quadrant IV e) $\left(x, \frac{1}{3}\right)$, where x < 0f) $\left(\frac{12}{13}, y\right)$, not in quadrant I
- **4.** If $P(\theta)$ is the point at the intersection of the terminal arm of angle θ and the unit circle, determine the exact coordinates of each of the following.
 - a) $P(\pi)$ b) $P\left(-\frac{\pi}{2}\right)$

 c) $P\left(\frac{\pi}{3}\right)$ d) $P\left(-\frac{\pi}{6}\right)$

 e) $P\left(\frac{3\pi}{4}\right)$ f) $P\left(-\frac{7\pi}{4}\right)$

 g) $P(4\pi)$ h) $P\left(\frac{5\pi}{2}\right)$

i)
$$P\left(\frac{5\pi}{6}\right)$$
 j) $P\left(-\frac{4\pi}{3}\right)$

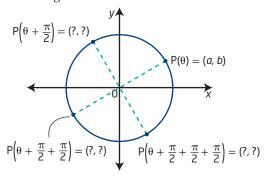
- **5.** Identify a measure for the central angle θ in the interval $0 \le \theta < 2\pi$ such that $P(\theta)$ is the given point.
 - a) (0, -1)b) (1, 0)c) $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ d) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ e) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ f) $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ g) $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ h) $\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$ i) $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ j) (-1, 0)
- **6.** Determine one positive and one negative measure for θ if $P(\theta) = \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

Apply

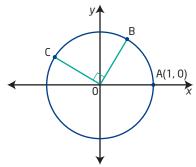
- 7. Draw a diagram of the unit circle.
 - a) Mark two points, $P(\theta)$ and $P(\theta + \pi)$, on your diagram. Use measurements to show that these points have the same coordinates except for their signs.
 - **b)** Choose a different quadrant for the original point, $P(\theta)$. Mark it and $P(\theta + \pi)$ on your diagram. Is the result from part a) still true?
- **8.** MINI LAB Determine the pattern in the coordinates of points that are $\frac{1}{4}$ rotation apart on the unit circle.
- **Step 1** Start with the points P(0) = (1, 0),

$$P\left(\frac{\pi}{3}\right) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \text{ and}$$
$$P\left(\frac{5\pi}{3}\right) = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right).$$
Show these points on a diagram.

- **Step 2** Move $+\frac{1}{4}$ rotation from each point. Determine each new point and its coordinates. Show these points on your diagram from step 1.
- **Step 3** Move $-\frac{1}{4}$ rotation from each original point. Determine each new point and its coordinates. Mark these points on your diagram.
- **Step 4** How do the values of the *x*-coordinates and *y*-coordinates of points change with each quarter-rotation? Make a copy of the diagram and complete the coordinates to summarize your findings.



- **9.** Use the diagram below to help answer these questions.
 - a) What is the equation of this circle?
 - **b)** If the coordinates of C are $\left(-\frac{2}{3}, \frac{\sqrt{5}}{3}\right)$, what are the coordinates of B?
 - c) If the measure of AB is θ, what is an expression for the measure of AC?
 Note: AB means the arc length from A to B.
 - **d)** Let $P(\theta) = B$. In which quadrant is $P(\theta \frac{\pi}{2})$?
 - e) What are the maximum and minimum values for either the x-coordinates or y-coordinates of points on the unit circle?



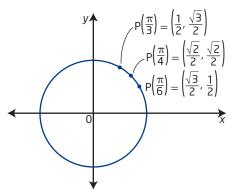
- 10. Mya claims that every value of x between0 and 1 can be used to find the coordinates of a point on the unit circle in quadrant I.
 - a) Do you agree with Mya? Explain.
 - **b)** Mya showed the following work to find the *y*-coordinate when x = 0.807.
 - $y = 1 (0.807)^2$ = 0.348 751

The point on the unit circle is (0.807, 0.348 751).

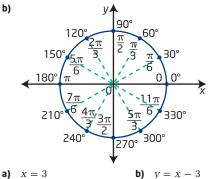
How can you check Mya's answer? Is she correct? If not, what is the correct answer?

c) If y = 0.2571, determine x so the point is on the unit circle and in the first quadrant.

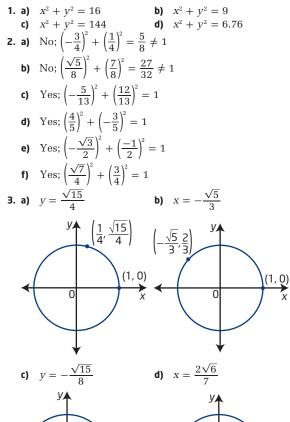
- 11. Wesley enjoys tricks and puzzles. One of his favourite tricks involves remembering the coordinates for $P(\frac{\pi}{3})$, $P(\frac{\pi}{4})$, and $P(\frac{\pi}{6})$. He will not tell you his trick. However, you can discover it for yourself.
 - a) Examine the coordinates shown on the diagram.

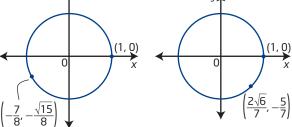


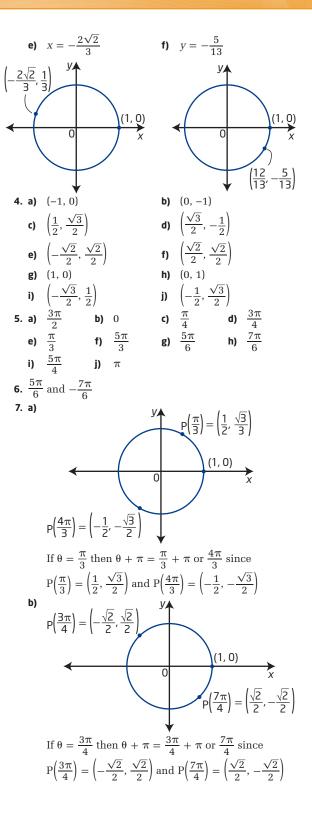
- **b)** What do you notice about the denominators?
- c) What do you notice about the numerators of the *x*-coordinates? Compare them with the numerators of the *y*-coordinates. Why do these patterns make sense?
- d) Why are square roots involved?
- e) Explain this memory trick to a partner.
- 12. a) Explain, with reference to the unit circle, what the interval $-2\pi \le \theta < 4\pi$ represents.
 - **b)** Use your explanation to determine all values for θ in the interval $-2\pi \le \theta < 4\pi$ such that $P(\theta) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right).$
 - c) How do your answers relate to the word "coterminal"?
- **13.** If $P(\theta) = \left(-\frac{1}{3}, -\frac{2\sqrt{2}}{3}\right)$, determine the following.
 - a) What does P(θ) represent? Explain using a diagram.
 - **b)** In which quadrant does θ terminate?
 - c) Determine the coordinates of $P(\theta + \frac{\pi}{2})$.
 - **d)** Determine the coordinates of $P(\theta \frac{\pi}{2})$.



4.2 The Unit Circle, pages 186 to 190

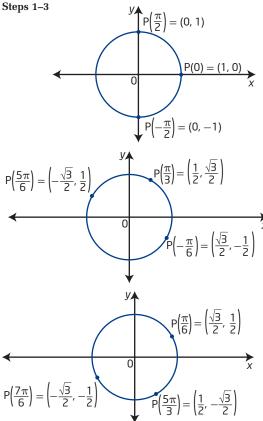




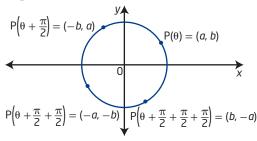


8.			
Point	$+\frac{1}{4}$ rotation	$-\frac{1}{4}$ rotation	Step 4: Description
P(0) = (1, 0)	$P\left(\frac{\pi}{2}\right) = (0, 1)$	$P\left(-\frac{\pi}{2}\right) = (0, -1)$	x- and y-values change places and take signs of new quadrant
$P\left(\frac{\pi}{3}\right) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	$P\left(\frac{\pi}{3} + \frac{\pi}{2}\right)$ $= P\left(\frac{5\pi}{6}\right)$ $= \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	$P\left(\frac{\pi}{3} - \frac{\pi}{2}\right)$ $= P\left(-\frac{\pi}{6}\right)$ $= \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$	x- and y-values change places and take signs of new quadrant
$P\left(\frac{5\pi}{3}\right) = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$	$P\left(\frac{5\pi}{3} + \frac{\pi}{2}\right)$ $= P\left(\frac{\pi}{6}\right)$ $= \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	$P\left(\frac{5\pi}{3} - \frac{\pi}{2}\right)$ $= P\left(\frac{7\pi}{6}\right)$ $= \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$	x- and y-values change places and take signs of new quadrant

Diagrams:



Step 4



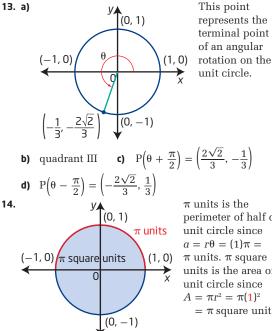
9. a) $x^2 + y^2 = 1$ c) $\theta + \frac{\pi}{2}$

$$\left(\frac{\sqrt{5}}{3}, \frac{2}{3}\right)$$

- d) quadrant IV
- e) maximum value is +1, minimum value is -1

b)

- **10.** a) Yes. In quadrant I the values of $\cos \theta$ decrease from 1 at $\theta = 0^{\circ}$ to 0 at $\theta = 90^{\circ}$, since the *x*-coordinate on the unit circle represents $\cos \theta$, in the first quadrant the values of x will range from 1 to 0.
 - **b)** Substitute the values of *x* and *y* into the equation $x^2 + y^2 = 1$, Mya was not correct, the correct answer is $y = \sqrt{1 - (0.807)^2}$ $=\sqrt{0.348751}$ ≈ 0.590551
 - c) x = 0.9664
- 11. b) All denominators are 2.
 - The numerators of the *x*-coordinates decrease C) from $\sqrt{3}$, $\sqrt{2}$, $\sqrt{1} = 1$, the numerators of the *y*-coordinates increase from $\sqrt{1}$, $\sqrt{2}$, $\sqrt{3}$. The x-coordinates are moving closer to the y-axis and therefore decrease in value, whereas the y-coordinates are moving further away from the x-axis and therefore increase in value.
 - Since $x^2 + y^2 = 1$ then $x = \sqrt{1 y^2}$ and d) $y = \sqrt{1 - x^2}$, all solutions involve taking square roots.
- 12. a) $-2\pi \leq \theta < 4\pi$ represents three rotations around the unit circle and includes three coterminal angles for each point on the unit circle.
 - **b)** If $P(\theta) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, then $\theta = -\frac{4\pi}{3}$ when $-2\pi \le \theta$ $\leq 0, \theta = \frac{2\pi}{3}$ when $0 \leq \theta \leq 2\pi$, and $\theta = \frac{8\pi}{3}$ when $2\pi \leq \theta < 4\pi$.
 - c) All these angles are coterminal since they are all 2π radians apart.



 π units is the perimeter of half of a unit circle since $a = r\theta = (1)\pi =$ π units. π square units is the area of a unit circle since $A = \pi r^2 = \pi (1)^2$ $= \pi$ square units.